Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Omega ; 9(29): 31556-31568, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39072134

RESUMEN

Polymeric membranes are widely used in water treatment because of their ease of fabrication and low cost. The flux and purification performance of membranes can be significantly improved by incorporating appropriate amounts of nanomaterials into the polymeric membrane matrices. In this study, neat poly(ether sulfone) (PES), PES/nano copper oxide (CuO), and PES/nano zinc oxide (ZnO) membranes are fabricated via phase inversion. The pure water flux of the neat PES membrane, which is 355.14 L/m2·h, is increased significantly with the addition of nano-CuO and nano-ZnO, and the pure water fluxes of the nanocomposite membranes vary in the range of 392.65-429.74 L/m2·h. Moreover, nano CuO and nano ZnO-doped PES nanocomposite membranes exhibit higher conductivity, color, total organic carbon, boron, iron, selenium, barium, and total chromium removal efficiencies than neat PES membranes. The membrane surfaces examined by Scanning Electron Microscopy (SEM) after water filtration revealed that those containing 0.5% wt. nano CuO and nano ZnO are more resistant to fouling than the membrane surfaces containing 1% wt. nano CuO and nano ZnO. Based on the results of this study, 0.5% wt. nano ZnO-doped PES membrane is found to be the most suitable membrane for use in water treatment due to its high pure water flux (427.14 L/m2·h), high pollutant removal efficiency, and high fouling resistance. When the mechanical properties of the membranes are examined, the addition of CuO and ZnO nanoparticles increases the membrane stiffness and modulus of elasticity. The addition of 0.5% and 1% for CuO leads to an increase in the modulus of elasticity by 57.95% and 324.43%, respectively, while the addition of 0.5% and 1% for ZnO leads to an increase in the modulus of elasticity by 480.68% and 1802.43%, respectively. At the same time, the tensile strength of the membranes also increases with the addition of nanomaterials.

2.
ACS Omega ; 9(41): 42159-42171, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39431085

RESUMEN

In this research, cellulose acetate (CA) and CA nanocomposite membranes, reinforced with mass fractions of cellulose nanofibrils (CNF), are prepared using the phase separation technique. The membranes are extensively characterized using several techniques: Fourier Transform Infrared (FTIR) spectroscopy confirms the chemical structures, while Scanning Electron Microscopy (SEM) reveals their surface morphology. Mechanical characterization is conducted to explore the mechanical behavior of the membranes under wet and dry conditions through tensile testing. The mechanical properties of CA and CA-CNF membranes are also estimated using the Mori-Tanaka mean-field homogenization method and compared to experimental findings. The flux performance for pure and dam water, assessed at 3 bar, demonstrates that CNF reinforcement notably enhances the CA membrane's performance, particularly in flux rate and fouling resistance. The CA membrane shows high efficiency in removing Fe2+, Ba2+, and Al3+ from dam water, while CA-CNF membranes exhibit a varied range of removal efficiencies for the same ions, with the 0.5 wt % CNF variant showing superior resistance to surface fouling. Additionally, while CNF increases tensile strength and stiffness, it leads to earlier failure under smaller deformations, especially at higher concentrations. This research provides a detailed assessment of CA and CA-CNF membranes, examining their chemical, structural, and mechanical properties alongside their effectiveness in water treatment applications.

3.
Heliyon ; 9(2): e13086, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36785816

RESUMEN

The performance of the membranes can be improved by adding the appropriate amount of nanomaterials to the polymeric membranes that can be used for water/wastewater treatment. In this study, the effects of polyvinylpyrrolidone (PVP), the impact of different amounts (0.5% and 1% wt.) of cellulose nanofibril (CNF), and the combined effects of PVP-CNF on the properties/performance of the polyethersulfone-based (PES-based) membrane are investigated. All PES-based ultrafiltration (UF) membranes are manufactured employing the phase inversion method and characterised via Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and the relevant techniques to determine the properties, including porosity, mean pore size, contact angle, water content, and pure water flux tests. Furthermore, the thermal properties of the prepared membranes are investigated using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. Experimental and numerical methods are applied for the mechanical characterisation of prepared membranes. For the experimental process, tensile tests under dry and wet conditions are conducted. The finite element (FE) method and Mori-Tanaka mean-field homogenisation are used as numerical methods to provide more detailed knowledge of membrane mechanics.

4.
ACS Omega ; 8(38): 34729-34745, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779974

RESUMEN

This research focuses on the production and characterization of pristine polyacrylonitrile (PAN) as well as halloysite nanotube (HNT)-doped PAN ultrafiltration (UF) membranes via the phase inversion technique. Membranes containing 0.1, 0.5, and 1% wt HNT in 16% wt PAN are fabricated, and their chemical compositions are examined using Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) is utilized to characterize the membranes' surface and cross-sectional morphologies. Atomic force microscopy (AFM) is employed to assess the roughness of the PAN/HNT membrane. Thermal characterization is conducted using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA), while contact angle and water content measurements reveal the hydrophilic/hydrophobic properties. The pure water flux (PWF) performance of the porous UF water filtration membranes is evaluated at 3 bar, with porosity and mean pore size calculations. The iron (Fe), manganese (Mn), and total organic carbon (TOC) removal efficiencies of PAN/HNT membranes from dam water are examined, and the surfaces of fouled membranes are investigated by using SEM post-treatment. Mechanical characterization encompasses tensile testing, the Mori-Tanaka homogenization approach, and finite element analysis. The findings offer valuable insights into the impact of HNT doping on PAN membrane characteristics and performance, which will inform future membrane development initiatives.

5.
Nanomaterials (Basel) ; 12(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36364496

RESUMEN

In this study, neat polyacrylonitrile (PAN) and fumed silica (FS)-doped PAN membranes (0.1, 0.5 and 1 wt% doped PAN/FS) are prepared using the phase inversion method and are characterised extensively. According to the Fourier Transform Infrared (FTIR) spectroscopy analysis, the addition of FS to the neat PAN membrane and the added amount changed the stresses in the membrane structure. The Scanning Electron Microscope (SEM) results show that the addition of FS increased the porosity of the membrane. The water content of all fabricated membranes varied between 50% and 88.8%, their porosity ranged between 62.1% and 90%, and the average pore size ranged between 20.1 and 21.8 nm. While the neat PAN membrane's pure water flux is 299.8 L/m2 h, it increased by 26% with the addition of 0.5 wt% FS. Furthermore, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques are used to investigate the membranes' thermal properties. Finally, the mechanical characterisation of manufactured membranes is performed experimentally with tensile testing under dry and wet conditions. To be able to provide further explanation to the explored mechanics of the membranes, numerical methods, namely the finite element method and Mori-Tanaka mean-field homogenisation are performed. The mechanical characterisation results show that FS reinforcement increases the membrane rigidity and wet membranes exhibit more compliant behaviour compared to dry membranes.

6.
Polymers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065285

RESUMEN

In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 µm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO2) reinforced nanocomposite membranes are approximately determined by the Mori-Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane.

7.
Polymers (Basel) ; 12(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081085

RESUMEN

To investigate the effect of polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes polyacrylonitrile (PAN) and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using the finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda