Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400459

RESUMEN

The functional reach test (FRT) is a clinical tool used to evaluate dynamic balance and fall risk in older adults and those with certain neurological diseases. It provides crucial information for developing rehabilitation programs to improve balance and reduce fall risk. This paper aims to describe a new tool to gather and analyze the data from inertial sensors to allow automation and increased reliability in the future by removing practitioner bias and facilitating the FRT procedure. A new tool for gathering and analyzing data from inertial sensors has been developed to remove practitioner bias and streamline the FRT procedure. The study involved 54 senior citizens using smartphones with sensors to execute FRT. The methods included using a mobile app to gather data, using sensor-fusion algorithms like the Madgwick algorithm to estimate orientation, and attempting to estimate location by twice integrating accelerometer data. However, accurate position estimation was difficult, highlighting the need for more research and development. The study highlights the benefits and drawbacks of automated balance assessment testing with mobile device sensors, highlighting the potential of technology to enhance conventional health evaluations.


Asunto(s)
Aplicaciones Móviles , Enfermedades del Sistema Nervioso , Humanos , Anciano , Reproducibilidad de los Resultados , Algoritmos , Teléfono Inteligente
2.
Sensors (Basel) ; 22(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35271205

RESUMEN

Ideally, to carry out screening for eye diseases, it is expected to use specialized medical equipment to capture retinal fundus images. However, since this kind of equipment is generally expensive and has low portability, and with the development of technology and the emergence of smartphones, new portable and cheaper screening options have emerged, one of them being the D-Eye device. When compared to specialized equipment, this equipment and other similar devices associated with a smartphone present lower quality and less field-of-view in the retinal video captured, yet with sufficient quality to perform a medical pre-screening. Individuals can be referred for specialized screening to obtain a medical diagnosis if necessary. Two methods were proposed to extract the relevant regions from these lower-quality videos (the retinal zone). The first one is based on classical image processing approaches such as thresholds and Hough Circle transform. The other performs the extraction of the retinal location by applying a neural network, which is one of the methods reported in the literature with good performance for object detection, the YOLO v4, which was demonstrated to be the preferred method to apply. A mosaicing technique was implemented from the relevant retina regions to obtain a more informative single image with a higher field of view. It was divided into two stages: the GLAMpoints neural network was applied to extract relevant points in the first stage. Some homography transformations are carried out to have in the same referential the overlap of common regions of the images. In the second stage, a smoothing process was performed in the transition between images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Retina , Fondo de Ojo , Humanos , Tamizaje Masivo , Retina/diagnóstico por imagen , Teléfono Inteligente
3.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35214498

RESUMEN

Large-scale labeled datasets are generally necessary for successfully training a deep neural network in the computer vision domain. In order to avoid the costly and tedious work of manually annotating image datasets, self-supervised learning methods have been proposed to learn general visual features automatically. In this paper, we first focus on image colorization with generative adversarial networks (GANs) because of their ability to generate the most realistic colorization results. Then, via transfer learning, we use this as a proxy task for visual understanding. Particularly, we propose to use conditional GANs (cGANs) for image colorization and transfer the gained knowledge to two other downstream tasks, namely, multilabel image classification and semantic segmentation. This is the first time that GANs have been used for self-supervised feature learning through image colorization. Through extensive experiments with the COCO and Pascal datasets, we show an increase of 5% for the classification task and 2.5% for the segmentation task. This demonstrates that image colorization with conditional GANs can boost other downstream tasks' performance without the need for manual annotation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Computadores , Procesamiento de Imagen Asistido por Computador/métodos , Semántica , Visión Ocular
4.
Sensors (Basel) ; 22(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35591272

RESUMEN

Rehabilitation aims to increase the independence and physical function after injury, surgery, or other trauma, so that patients can recover to their previous ability as much as possible. To be able to measure the degree of recovery and impact of the treatment, various functional performance tests are used. The Eight Hop Test is a hop exercise that is directly linked to the rehabilitation of people suffering from tendon and ligament injuries on the lower limb. This paper presents a systematic review on the use of sensors for measuring functional movements during the execution of the Eight Hop Test, focusing primarily on the use of sensors, related diseases, and different methods implemented. Firstly, an automated search was performed on the publication databases: PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Secondly, the publications related to the Eight-Hop Test and sensors were filtered according to several search criteria and 15 papers were finally selected to be analyzed in detail. Our analysis found that the Eight Hop Test measurements can be performed with motion, force, and imaging sensors.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Prueba de Esfuerzo , Ejercicio Físico , Prueba de Esfuerzo/métodos , Humanos , Extremidad Inferior , Movimiento , Rendimiento Físico Funcional
5.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062542

RESUMEN

In the pandemic time, the monitoring of the progression of some diseases is affected and rehabilitation is more complicated. Remote monitoring may help solve this problem using mobile devices that embed low-cost sensors, which can help measure different physical parameters. Many tests can be applied remotely, one of which is the six-minute walk test (6MWT). The 6MWT is a sub-maximal exercise test that assesses aerobic capacity and endurance, allowing early detection of emerging medical conditions with changes. This paper presents a systematic review of the use of sensors to measure the different physical parameters during the performance of 6MWT, focusing on various diseases, sensors, and implemented methodologies. It was performed with the PRISMA methodology, where the search was conducted in different databases, including IEEE Xplore, ACM Digital Library, ScienceDirect, and PubMed Central. After filtering the papers related to 6MWT and sensors, we selected 31 papers that were analyzed in more detail. Our analysis discovered that the measurements of 6MWT are primarily performed with inertial and magnetic sensors. Likewise, most research studies related to this test focus on multiple sclerosis and pulmonary diseases.


Asunto(s)
Prueba de Esfuerzo , Caminata , Prueba de Paso
6.
Sensors (Basel) ; 22(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080901

RESUMEN

Nowadays, individuals have very stressful lifestyles, affecting their nutritional habits. In the early stages of life, teenagers begin to exhibit bad habits and inadequate nutrition. Likewise, other people with dementia, Alzheimer's disease, or other conditions may not take food or medicine regularly. Therefore, the ability to monitor could be beneficial for them and for the doctors that can analyze the patterns of eating habits and their correlation with overall health. Many sensors help accurately detect food intake episodes, including electrogastrography, cameras, microphones, and inertial sensors. Accurate detection may provide better control to enable healthy nutrition habits. This paper presents a systematic review of the use of technology for food intake detection, focusing on the different sensors and methodologies used. The search was performed with a Natural Language Processing (NLP) framework that helps screen irrelevant studies while following the PRISMA methodology. It automatically searched and filtered the research studies in different databases, including PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Then, the manual analysis selected 30 papers based on the results of the framework for further analysis, which support the interest in using sensors for food intake detection and nutrition assessment. The mainly used sensors are cameras, inertial, and acoustic sensors that handle the recognition of food intake episodes with artificial intelligence techniques. This research identifies the most used sensors and data processing methodologies to detect food intake.


Asunto(s)
Inteligencia Artificial , Evaluación Nutricional , Adolescente , Ingestión de Alimentos , Conducta Alimentaria , Alimentos , Humanos
7.
Medicina (Kaunas) ; 58(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35454342

RESUMEN

Nowadays, Artificial Intelligence (AI) and its subfields, Machine Learning (ML) and Deep Learning (DL), are used for a variety of medical applications. It can help clinicians track the patient's illness cycle, assist with diagnosis, and offer appropriate therapy alternatives. Each approach employed may address one or more AI problems, such as segmentation, prediction, recognition, classification, and regression. However, the amount of AI-featured research on Inherited Retinal Diseases (IRDs) is currently limited. Thus, this study aims to examine artificial intelligence approaches used in managing Inherited Retinal Disorders, from diagnosis to treatment. A total of 20,906 articles were identified using the Natural Language Processing (NLP) method from the IEEE Xplore, Springer, Elsevier, MDPI, and PubMed databases, and papers submitted from 2010 to 30 October 2021 are included in this systematic review. The resultant study demonstrates the AI approaches utilized on images from different IRD patient categories and the most utilized AI architectures and models with their imaging modalities, identifying the main benefits and challenges of using such methods.


Asunto(s)
Inteligencia Artificial , Enfermedades de la Retina , Manejo de la Enfermedad , Humanos , Aprendizaje Automático
8.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641012

RESUMEN

Fitness and sport have drawn significant attention in wearable and persuasive computing. Physical activities are worthwhile for health, well-being, improved fitness levels, lower mental pressure and tension levels. Nonetheless, during high-power and commanding workouts, there is a high likelihood that physical fitness is seriously influenced. Jarring motions and improper posture during workouts can lead to temporary or permanent disability. With the advent of technological advances, activity acknowledgment dependent on wearable sensors has pulled in countless studies. Still, a fully portable smart fitness suite is not industrialized, which is the central need of today's time, especially in the Covid-19 pandemic. Considering the effectiveness of this issue, we proposed a fully portable smart fitness suite for the household to carry on their routine exercises without any physical gym trainer and gym environment. The proposed system considers two exercises, i.e., T-bar and bicep curl with the assistance of the virtual real-time android application, acting as a gym trainer overall. The proposed fitness suite is embedded with a gyroscope and EMG sensory modules for performing the above two exercises. It provided alerts on unhealthy, wrong posture movements over an android app and is guided to the best possible posture based on sensor values. The KNN classification model is used for prediction and guidance for the user while performing a particular exercise with the help of an android application-based virtual gym trainer through a text-to-speech module. The proposed system attained 89% accuracy, which is quite effective with portability and a virtually assisted gym trainer feature.


Asunto(s)
COVID-19 , Pandemias , Ejercicio Físico , Humanos , Postura , SARS-CoV-2
9.
Sensors (Basel) ; 21(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925813

RESUMEN

The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices' security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.


Asunto(s)
Internet de las Cosas , Ciudades , Seguridad Computacional , Confidencialidad , Atención a la Salud , Humanos
10.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34770292

RESUMEN

Medicine is heading towards personalized care based on individual situations and conditions. With smartphones and increasingly miniaturized wearable devices, the sensors available on these devices can perform long-term continuous monitoring of several user health-related parameters, making them a powerful tool for a new medicine approach for these patients. Our proposed system, described in this article, aims to develop innovative solutions based on artificial intelligence techniques to empower patients with cardiovascular disease. These solutions will realize a novel 5P (Predictive, Preventive, Participatory, Personalized, and Precision) medicine approach by providing patients with personalized plans for treatment and increasing their ability for self-monitoring. Such capabilities will be derived by learning algorithms from physiological data and behavioral information, collected using wearables and smart devices worn by patients with health conditions. Further, developing an innovative system of smart algorithms will also focus on providing monitoring techniques, predicting extreme events, generating alarms with varying health parameters, and offering opportunities to maintain active engagement of patients in the healthcare process by promoting the adoption of healthy behaviors and well-being outcomes. The multiple features of this future system will increase the quality of life for cardiovascular diseases patients and provide seamless contact with a healthcare professional.


Asunto(s)
Inteligencia Artificial , Dispositivos Electrónicos Vestibles , Atención a la Salud , Humanos , Calidad de Vida , Teléfono Inteligente
11.
Sensors (Basel) ; 21(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33803927

RESUMEN

Smartphone sensors have often been proposed as pervasive measurement systems to assess mobility in older adults due to their ease of use and low-cost. This study analyzes a smartphone-based application's validity and reliability to quantify temporal variables during the single sit-to-stand test with institutionalized older adults. Forty older adults (20 women and 20 men; 78.9 ± 8.6 years) volunteered to participate in this study. All participants performed the single sit-to-stand test. Each sit-to-stand repetition was performed after an acoustic signal was emitted by the smartphone app. All data were acquired simultaneously with a smartphone and a digital video camera. The measured temporal variables were stand-up time and total time. The relative reliability and systematic bias inter-device were assessed using the intraclass correlation coefficient (ICC) and Bland-Altman plots. In contrast, absolute reliability was assessed using the standard error of measurement and coefficient of variation (CV). Inter-device concurrent validity was assessed through correlation analysis. The absolute percent error (APE) and the accuracy were also calculated. The results showed excellent reliability (ICC = 0.92-0.97; CV = 1.85-3.03) and very strong relationships inter-devices for the stand-up time (r = 0.94) and the total time (r = 0.98). The APE was lower than 6%, and the accuracy was higher than 94%. Based on our data, the findings suggest that the smartphone application is valid and reliable to collect the stand-up time and total time during the single sit-to-stand test with older adults.


Asunto(s)
Aplicaciones Móviles , Teléfono Inteligente , Anciano , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
12.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502653

RESUMEN

Healthcare treatments might benefit from advances in artificial intelligence and technological equipment such as smartphones and smartwatches. The presence of cameras in these devices with increasingly robust and precise pattern recognition techniques can facilitate the estimation of the wound area and other telemedicine measurements. Currently, telemedicine is vital to the maintenance of the quality of the treatments remotely. This study proposes a method for measuring the wound area with mobile devices. The proposed approach relies on a multi-step process consisting of image capture, conversion to grayscale, blurring, application of a threshold with segmentation, identification of the wound part, dilation and erosion of the detected wound section, identification of accurate data related to the image, and measurement of the wound area. The proposed method was implemented with the OpenCV framework. Thus, it is a solution for healthcare systems by which to investigate and treat people with skin-related diseases. The proof-of-concept was performed with a static dataset of camera images on a desktop computer. After we validated the approach's feasibility, we implemented the method in a mobile application that allows for communication between patients, caregivers, and healthcare professionals.


Asunto(s)
Aplicaciones Móviles , Telemedicina , Inteligencia Artificial , Atención a la Salud , Humanos , Teléfono Inteligente
13.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575650

RESUMEN

Due to the increasing age of the European population, there is a growing interest in performing research that will aid in the timely and unobtrusive detection of emerging diseases. For such tasks, mobile devices have several sensors, facilitating the acquisition of diverse data. This study focuses on the analysis of the data collected from the mobile devices sensors and a pressure sensor connected to a Bitalino device for the measurement of the Timed-Up and Go test. The data acquisition was performed within different environments from multiple individuals with distinct types of diseases. Then this data was analyzed to estimate the various parameters of the Timed-Up and Go test. Firstly, the pressure sensor is used to extract the reaction and total test time. Secondly, the magnetometer sensors are used to identify the total test time and different parameters related to turning around. Finally, the accelerometer sensor is used to extract the reaction time, total test time, duration of turning around, going time, return time, and many other derived metrics. Our experiments showed that these parameters could be automatically and reliably detected with a mobile device. Moreover, we identified that the time to perform the Timed-Up and Go test increases with age and the presence of diseases related to locomotion.


Asunto(s)
Computadoras de Mano , Locomoción , Equilibrio Postural , Proyectos de Investigación , Anciano , Humanos , Masculino , Tiempo de Reacción , Estudios de Tiempo y Movimiento
14.
J Med Syst ; 44(12): 199, 2020 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-33070247

RESUMEN

The analysis of movements used in physiotherapy areas related to the elderly is becoming increasingly important due to factors such as the increase in the average life expectancy and the rate of elderly people over the whole population. In this systematic review, we try to determine how the inertial sensors embedded in mobile devices are exploited for the measurement of the different parameters involved in the Timed-Up and Go test. The results show the mobile devices equipped with onboard motion sensors can be exploited for these types of studies: the most commonly used sensors are the magnetometer, accelerometer and gyroscope available in consumer off-the-shelf smartphones. Other features typically used to evaluate the Timed-Up and Go test are the time duration, the angular velocity and the number of steps, allowing for the recognition of some diseases as well as the measurement of the subject's performance during the test execution.


Asunto(s)
Movimiento , Teléfono Inteligente , Anciano , Computadoras de Mano , Humanos , Tamizaje Masivo
15.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974755

RESUMEN

This paper addresses the significant need for improvements in device version reporting and practice across the academic and technical activity monitoring literature, and it recommends assessments for new and updated consumer sensing devices. Reproducibility and data veracity are central to good scholarship, and particularly significant in clinical and health applications. Across the literature there is an absence of device version reporting and a failure to recognize that device validity is not maintained when firmware and software updates can, and do, change device performance and parameter estimation. In this paper, we propose the use of tractable methods to assess devices at their current version and provide an example empirical approach. Experimental results for heart rate and step count acquisitions during walking and everyday living activities from Garmin Vivosmart 3 (v4.10) wristband monitors are presented and analyzed, and the reliability issues of optically-acquired heart rates, especially during periods of activity, are demonstrated and discussed. In conclusion, the paper recommends the empirical assessment of new and updated activity monitors and improvements in device version reporting across the academic and technical literature.


Asunto(s)
Frecuencia Cardíaca/fisiología , Monitoreo Ambulatorio/métodos , Caminata/fisiología , Dispositivos Electrónicos Vestibles , Acelerometría/instrumentación , Actividades Cotidianas , Adulto , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Sensors (Basel) ; 18(2)2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466316

RESUMEN

Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature.


Asunto(s)
Actividades Cotidianas , Computadores , Reconocimiento de Normas Patrones Automatizadas , Humanos , Internet , Programas Informáticos , Tecnología Inalámbrica
17.
Sensors (Basel) ; 18(1)2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29315232

RESUMEN

An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT).


Asunto(s)
Actividades Cotidianas , Algoritmos , Humanos , Funciones de Verosimilitud , Reconocimiento de Normas Patrones Automatizadas , Procesamiento de Señales Asistido por Computador , Máquina de Vectores de Soporte
18.
Sensors (Basel) ; 16(2): 184, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26848664

RESUMEN

This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user's daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs).

19.
PeerJ Comput Sci ; 10: e1854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435573

RESUMEN

Named Data Networking (NDN) has emerged as a promising network architecture for content delivery in edge infrastructures, primarily due to its name-based routing and integrated in-network caching. Despite these advantages, sub-optimal performance often results from the decentralized decision-making processes of caching devices. This article introduces a paradigm shift by implementing a Software Defined Networking (SDN) controller to optimize the placement of highly popular content in NDN nodes. The optimization process considers critical networking factors, including network congestion, security, topology modification, and flowrules alterations, which are essential for shaping content caching strategies. The article presents a novel content caching framework, Popularity-aware Caching in Popular Programmable NDN nodes (PaCPn). Employing a multi-variant vector autoregression (VAR) model driven by an SDN controller, PaCPn periodically updates content popularity based on time-series data, including 'request rates' and 'past popularity'. It also introduces a controller-driven heuristic algorithm that evaluates the proximity of caching points to consumers, considering factors such as 'distance cost,' 'delivery time,' and the specific 'status of the requested content'. PaCPn utilizes customized DATA named packets to ensure the source stores content with a valid residual freshness period while preventing intermediate nodes from caching it. The experimental results demonstrate significant improvements achieved by the proposed technique PaCPn compared to existing schemes. Specifically, the technique enhances cache hit rates by 20% across various metrics, including cache size, Zipf parameter, and exchanged traffic within edge infrastructure. Moreover, it reduces content retrieval delays by 28%, considering metrics such as cache capacity, the number of consumers, and network throughput. This research advances NDN content caching and offers potential optimizations for edge infrastructures.

20.
PeerJ Comput Sci ; 10: e1823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660214

RESUMEN

The measurement of Functional Reach Test (FRT) is a widely used assessment tool in various fields, including physical therapy, rehabilitation, and geriatrics. This test evaluates a person's balance, mobility, and functional ability to reach forward while maintaining stability. Recently, there has been a growing interest in utilizing sensor-based systems to objectively and accurately measure FRT results. This systematic review was performed in various scientific databases or publishers, including PubMed Central, IEEE Explore, Elsevier, Springer, the Multidisciplinary Digital Publishing Institute (MDPI), and the Association for Computing Machinery (ACM), and considered studies published between January 2017 and October 2022, related to methods for the automation of the measurement of the Functional Reach Test variables and results with sensors. Camera-based devices and motion-based sensors are used for Functional Reach Tests, with statistical models extracting meaningful information. Sensor-based systems offer several advantages over traditional manual measurement techniques, as they can provide objective and precise measurements of the reach distance, quantify postural sway, and capture additional parameters related to the movement.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda