Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Org Chem ; 86(5): 4143-4158, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33586436

RESUMEN

A variety of physicochemical properties and several hydrogen-bond donors have been used to define methods and to build scales aiming at measuring the hydrogen-bond acceptance of solvents. There is a great deal of confusion in these scales and methods. Solvatochromic, solvatocalorimetric, solvatovibrational, and 19F solvatomagnetic comparison methods are critically reviewed. Only two methods, the solvatomagnetic and the solvatocalorimetric ones, are able to yield reliable solvent hydrogen-bond acceptance scales. The solvatomagnetic ß1 scale defined from the 19F chemical shift of 4-fluorophenol is extended to many solvents including ionic liquids and green solvents. The results for about 240 hydrogen-bond acceptor solvents are organized in a numerical ß1 database. The comparison of ß1 with solvatochromic scales highlights their shortcomings, in particular for the important class of amphiprotic solvents. Therefore, the use of the 19F solvatomagnetic comparison method and of the solvatomagnetic ß1 scale is recommended in solvent effect studies.


Asunto(s)
Líquidos Iónicos , Hidrógeno , Enlace de Hidrógeno , Solventes
2.
J Org Chem ; 86(24): 18192-18203, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34851652

RESUMEN

The discovery of a multiple-bond-forming process merging the singlet oxygen-mediated dearomatization of 3,4-disubstitued phenols and diastereo- and regioselective epoxidation is described. This one-pot strategy using a transition metal-free multicatalytic system comprised of rose bengal and cesium carbonate allowed the efficient formation of functionalized epoxyquinol products under mild conditions. Mechanistic investigations have been performed to shed the light on the key species involved in this transformation.


Asunto(s)
Fenoles , Elementos de Transición , Oxidación-Reducción , Rosa Bengala , Oxígeno Singlete
3.
Org Biomol Chem ; 19(5): 1083-1099, 2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33427829

RESUMEN

A highly enantioselective synthesis of (R,S) or (S,S)-2,6-disubstituted dehydropiperidines has been previously achieved through Sn/Li transmetalation of the corresponding stannylated dehydropiperidines or of their precursors. Herein, we successively consider their Upjohn's syn dihydroxylation and their anti-dihydroxylation via an epoxidation reaction followed by epoxide opening reaction. The stereochemical course of these reactions was first reported including the use of appropriate protecting groups before considering the conversion of the obtained compounds into NH or NMe iminosugar hydrochlorides. A primary evaluation of the designed iminosugar C-glycosides as glycosidase inhibitors suggests candidates for the selective inhibition of α-galactosidase, amyloglycosidase and naringinase. Beyond the reported results, the method constitutes a highly modulable route for the synthesis of well stereodefined iminosugar C-glycosides, an advantage which might be used for the design of iminosugars to enhance their biological properties.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósidos/síntesis química , Glicósidos/farmacología , Iminoazúcares/química , Conformación de Carbohidratos , Técnicas de Química Sintética , Inhibidores Enzimáticos/química , Glicósidos/química , Modelos Moleculares , Estereoisomerismo
4.
Inorg Chem ; 58(12): 7730-7745, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31140791

RESUMEN

Three new copper(I) complexes [Cu(LX)2]+(PF6-) (where LX stands for 2,9-dihalo-1,10-phenanthroline and X = Cl, Br, and I) have been synthesized in order to study the impact of halogen substituents tethered in the α position of the chelating nitrogen atoms on their physical properties. The photophysical properties of these new complexes (hereafter named Cu-X) were characterized in both their ground and excited states. Femtosecond ultrafast spectroscopy revealed that early photoinduced processes are faster for Cu-I than for Cu-Cl or Cu-Br, both showing similar behaviors. Their electronic absorption and electrochemical properties are comparable to benchmark [Cu(dmp)2]+ (where dmp stands for 2,9-dimethyl-1,10-phenanthroline); furthermore, their optical features were fully reproduced by time-dependent density functional theory and ab initio molecular dynamics calculations. All three complexes are luminescent at room temperature, showing that halogen atoms bound to positions 2 and 9 of phenanthroline are sufficiently bulky to prevent strong interactions between the excited Cu complexes and solvent molecules in the coordination sphere. Their behavior in the excited state, more specifically the extent of the photoluminescence efficiency and its dependence on the temperature, is, however, strongly dependent on the nature of the halogen. A combination of ultrafast transient absorption spectroscopy, temperature-dependent steady-state fluorescence spectroscopy, and computational chemistry allows one to gain a deeper understanding of the behavior of all three complexes in their excited state.

5.
Phys Chem Chem Phys ; 20(37): 24477-24489, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30222172

RESUMEN

Herein, the synthesis of three covalently linked donor-acceptor zinc porphyrin-fullerene (ZnP-C60) dyads (C60trZnPCOOH, C60trZnPtrCOOH and C60ZnPCOOH) is described, and their application as sensitizers in NiO-based dye-sensitized solar cells (DSCs) is discussed. To the best of our knowledge, this is the first example where covalently linked ZnP-C60 dyads have been used as chromophores in NiO-based DSCs. In an effort to examine whether the distance of the chromophore from the electron acceptor entity and/or the NiO surface affects the performance of the cells, a triazole ring was introduced as a spacer between ZnP and the two peripheral units C60 and -COOH. The triazole ring was inserted between ZnP and C60 in dyad C60trZnPCOOH, whereas both the anchoring group and C60 were connected to ZnP through triazole spacers in C60trZnPtrCOOH, and dyad C60ZnPCOOH did not contain any triazole linker. Photophysical investigation performed by ultrafast transient absorption spectroscopy in solution and on the NiO surface demonstrated that all the porphyrin-fullerene dyads exhibited long-lived charge-separated states due to electron shifts from the reduced porphyrin core to C60. The transient experiments performed in solution showed that the presence of triazole ring influenced the photophysical properties of the dyads C60trZnPCOOH and C60trZnPtrCOOH and in particular, increased the lifetime of the charge-separated states compared to that of the C60ZnPCOOH dyad. On the other hand, the corresponding studies on the NiO surface proved that the triazole spacer has a rather moderate impact on the charge separation (NiO-ZnP˙+-C60˙-) and charge recombination (NiO-3*ZnP-C60) rate constants. All three dyads exhibited enhanced performance in terms of photovoltaic measurements with more than threefold increase compared to the reference compound PhtrZnPCOOH in which the C60 acceptor is absent. Two different electrolytes were examined (I3-/I- and CoIII/II) and in most cases, the presence of the triazole ring enhanced their photovoltaic performance. The best performing dyad in I3-/I- was C60trZnPCOOH (PCE = 0.076%); in CoIII/II, the best performing dyad was C60trZnPtrCOOH (PCE = 0.074%).

6.
Planta Med ; 82(11-12): 967-72, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27224268

RESUMEN

The seeds of Carapa procera are exploited extensively in West African ethnopharmacy for the treatment of several pathologies, including inflammation. They also are effective as insect antifeedants and as a mosquito repellent. With the aim of identifying bioactive principles, an ethyl acetate extract of the defatted seeds was made and fractionated. Two principle compounds were isolated. One of these, 5,6-dehydro-7-deacetoxy-7-oxogedunin (1), while known from another genus of the Meliaceae, is newly identified from the genus Carapa and its X-ray structure is described for the first time. In addition, 1 displayed strong anti-clonogenic activity at 10 µM. The other compound, mexicanolide (2), is known from this species and showed neither cytotoxicity nor anti-clonogenicity. These differences in efficacy are discussed in relation to known structure-activity relationships of limonoids.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Limoninas/aislamiento & purificación , Meliaceae/química , Extractos Vegetales/aislamiento & purificación , Triterpenos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Limoninas/química , Limoninas/farmacología , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Semillas/química , Triterpenos/química , Triterpenos/farmacología
7.
J Org Chem ; 79(20): 9754-61, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25260182

RESUMEN

Synthesis of the originally proposed 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile led to a structural revision, and the product has now been identified as unknown compound 1-oxo-1H-phenalene-2,3-dicarbonitrile. The structural assignment was corroborated by detailed NMR studies and unambiguously confirmed by X-ray diffraction. A mechanism is proposed to explain the formation of this original heterocyclic scaffold. In addition, some new chemical transformations involving this compound are presented.


Asunto(s)
Compuestos Heterocíclicos/síntesis química , Nitrilos/química , Nitrilos/síntesis química , Pirroles/química , Pirroles/síntesis química , Difracción de Rayos X , Compuestos Heterocíclicos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 4): m125-6, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24826091

RESUMEN

In the title hydrated salt, [Co(C12H8N2)3]2[PVW11O40]·2H2O, the complete Kegggin ion is generated by crystallographic inversion symmetry, which imposes statistical disorder on the O atoms of its central PO4 group. The V atom is statistically disordered over all the metal sites of the anion. In the cation, the Co(2+) ion is coordinated by three bidentate 1,10-phenanthroline (phen) ligands, generating a distorted CoN6 octa-hedron. Possible very weak intra-molecular C-H⋯π inter-actions occur in the cation. In the crystal, the components are linked by O-H⋯O and C-H⋯O inter-actions, building a three-dimensional network featuring one-dimensional voids along the c-axis direction.

9.
Inorg Chem ; 52(21): 12416-28, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24187927

RESUMEN

We report the palladium-catalyzed direct 5-arylation of both metalated and nonmetalated thiophene moieties of iridium complexes 2, 3, and 4 with aryl halides via C-H bond functionalization. This method opens new routes to varieties of Ir complexes in only one step, allowing easy modification of the nature of the ligand. The photophysical properties of the new functionalized complexes have been studied by means of absorption and emission spectroscopy. The extension of the π-conjugated system induces a bathochromic and hyperchromic shift of the absorption spectra, an effect reproduced by first principle calculations. Indeed, the bathochromic shifts are related to a more delocalized nature of the excited-states. All complexes are photoluminescent in the red region of the spectrum. This study establishes that arylation of the thienyl ring affects strongly the electronic properties of the resulting complexes, even when the thienyl ring is remote and not directly metalated to the iridium center, as in the thienyltrifluoroacetonate complex 4.

10.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 6): o938-9, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23795103

RESUMEN

The title compound, C15H20O5, presents a bis-norsesquiterpene skeleton, with a trans-deca-line backbone constrained by the lactone bridge. The α-hy-droxy substituent and the methyl group belonging to the two deca-line rings are in axial positions, whereas the other methyl group and the acyl group occupy the sterically preferred equatorial positions. The mol-ecular structure is stabilized by an intra-molecular C-H⋯O hydrogen bond. In the crystal, mol-ecules are linked into chains along [010] by O-H⋯O hydrogen bonds.

11.
ChemSusChem ; 15(16): e202200520, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35691936

RESUMEN

Finding new efficient p-type sensitizers for NiO photocathodes is a great challenge for the development of promising low-cost tandem dye-sensitized solar cells (DSSCs). Now, the focus of researchers investigating these cells has been to create high-performance p-type systems. With this intention, herein, the design and synthesis of six new phenoxazine-based donor-acceptor (D-A)-configured organic dyes PO1-6 was reported, comprising different acceptor moieties specially designed for the sensitization of mesoporous p-type semiconductor NiO for the construction of p-type DSSCs (p-DSSCs). This work includes structural, photophysical, thermal, electrochemical, theoretical, and photoelectrochemical studies of these dyes, including evaluation of their structure-property relationships. The optical studies revealed that PO1-6 displayed adequate absorption and emission features in the range of 480-550 and 560-650 nm, respectively, with a bandgap in the order of 2.05-2.40 eV, and their thermodynamic parameters favored an efficient interfacial charge transfer involving NiO. Among the six new dyes, the device based on sensitizer PO2 carrying electron-withdrawing 1,3-diethyl-2-thiobarbituric acid achieved the highest power conversion efficiency of 0.031 % (short-circuit current density=0.89 mA cm-2 , open-circuit voltage=101 mV, and fill factor=35 %). Conclusively, the study furnishes an understanding of the intricacies involved in the structural modification of phenoxazine-based sensitizers to further ameliorate the performance of the p-type DSSCs.

12.
Chemistry ; 17(41): 11637-49, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21887829

RESUMEN

Structural features of galanthamine and codeine, two allosteric potentiating ligands of nicotinic acetylcholine receptors (nAChRs), have been investigated through experimental studies in solution by FTIR and NMR spectroscopy and by quantum chemical calculations in the isolated state. The infrared spectra accumulated in solvents of various polarities show that the intramolecular OH···O hydrogen bond in galanthamine is stronger than the corresponding interaction in codeine. Molecular electrostatic potential calculations allow rationalisation of the experimental trends. NOE measurements on the two ligands in the same solvent range show significant differences. In apolar solvents, the NMR spectroscopic data indicate the occurrence of CH···O hydrogen-bond interactions, whereas in the more polar solvents, a trans orientation of the methoxy group with respect to the furanyl oxygen atom is favoured. A natural bond orbital (NBO) analysis provides evidence that these stabilising interactions originate in the hyperconjugation between the lone pairs of the furanyl oxygen atoms, n(O), and the methoxy antibonding σ*(C-H) orbitals within the two molecules. Despite the strong structural similarities between the two allosteric modulators, FTIR equilibrium constants measurements of hydrogen-bond complexation combined with quantum chemistry calculations point out the significant increase of hydrogen-bond accepting strength of galanthamine relative to codeine. This increase is mainly assignable to the stronger hydrogen-bond basicity of the hydroxyl group, and to a lesser extent to the higher hydrogen-bond accepting strength of the amino nitrogen of galanthamine in comparison with the corresponding groups of codeine. An analysis of the interactions that occur between the two ligands and acetylcholine esterase (AChE) suggests significant differences with Trp84, a key component of the AChE catalytic active site. In contrast, both ligands appear to interact similarly with acetylcholine binding protein (AChBP).


Asunto(s)
Proteínas Portadoras/química , Codeína/química , Galantamina/química , Receptores Nicotínicos/química , Catálisis , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Teóricos , Teoría Cuántica , Receptores Nicotínicos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
13.
Inorg Chem ; 50(22): 11309-22, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017327

RESUMEN

Two new sterically challenged diimine ligands L(1) (2,9-dimesityl-2-(4'-bromophenyl)imidazo[4,5-f][1,10]phenanthroline) and L(2) (3,6-di-n-butyl-11-bromodipyrido[3,2-a:2',3'-c]phenazine) have been synthesized with the aim to build original heteroleptic copper(I) complexes, following the HETPHEN concept developed by Schmittel and co-workers. The structure of L(1) is based on a phen-imidazole molecular core, derivatized by two highly bulky mesityl groups in positions 2 and 9 of the phenanthroline cavity, preventing the formation of a homoleptic species, while L(2) is a dppz derivative, bearing n-butyl chains in α positions of the chelating nitrogen atoms. The unambiguous formation of six novel heteroleptic copper(I) complexes based on L(1), L(2), and complementary matching ligands (2,9-R(2)-1,10-phenanthroline, with R = H, methyl, n-butyl or mesityl) has been evidenced, and the resulting compounds were fully characterized. The electronic absorption spectra of all complexes fits well with DFT calculations allowing the assignment of the main transitions. The characteristics of the emissive excited state were investigated in different solvents using time-resolved single photon counting and transient absorption spectroscopy. The complexes with ligand L(2), bearing a characteristic dppz moiety, exhibit a very low energy excited-state which mainly leads to fast nonradiative relaxation, whereas the emission lifetime is higher for those containing the bulky ligand L(1). For example, a luminescence quantum yield of about 3 × 10(-4) is obtained with a decay time of about 50 ns for C2 ([Cu(I)(nBu-phen)(L(1))](+)) with a weak influence of strong coordinating solvent on the luminescence properties. Overall, the spectral features are those expected for a highly constrained coordination cage. Yet, the complexes are stable in solution, partly due to the beneficial π stacking between mesityl groups and vicinal phenanthroline aromatic rings, as evidenced by the X-ray structure of complex C3 ([Cu(I)(Mes-phen)(L(2))](+)). Electrochemistry of the copper(I) complexes revealed reversible anodic behavior, corresponding to a copper(I) to copper(II) transition. The half wave potentials increase with the steric bulk at the level of the copper(I) ion, reaching a value as high as 1 V vs SCE, with the assistance of ligand induced electronic effects. L(1) and L(2) are further end-capped by a bromo functionality. A Suzuki cross-coupling reaction was directly performed on the complexes, in spite of the handicapping lability of copper(I)-phenanthroline complexes.

14.
Bioorg Med Chem ; 19(24): 7623-34, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22056840

RESUMEN

Structural features and hydrogen-bond interactions of dinotefuran (DIN), imidacoloprid (IMI) and acetamiprid (ACE) have been investigated experimentally through analyses of new crystal structures and observations in structural databases, as well as by Density Functional Theory quantum chemical calculations. Several conformations are observed experimentally in the solid state, highlighting the large flexibility of these compounds. This feature is confirmed by the theoretical calculations in the gas phase, the numerous and different energetic minima of the three neonicotinoids being located within a 10kJ/mol range. Comparisons of the observed and simulated data sheds light on the hydrogen-bond (HB) strength of the functional group at the tip of the electronegative fragment of each pharmacophore (NO(2) for DIN and IMI and CN for ACE). This effect originates in the 'push-pull' nature of these fragments and the related extensive electron delocalization. Molecular electrostatic potential calculations provide a ranking of the two fragments of the three neonicotinoid in terms of HB strength. Thus, the NO(2) group of DIN is the strongest HB acceptor of the electronegative fragment, closely followed by the cyano group of ACE. These two groups are significantly more potent than the NO(2) group of IMI. With respect to the other fragments of the three neonicotinoids, the nitrogen atom of the pyridine of IMI and ACE are stronger HB acceptors than the oxygen atom of the furanyl moiety of DIN. Finally, compared to electrophysiological studies obtained from cockroach synaptic and extrasynaptic receptors, DIN appears more effective than IMI and ACE because it strongly increases dose-dependently the ganglionic depolarisation and the currents amplitudes. These data suggest that DIN, IMI and ACE belong to two subgroups which act differently as agonists of insect nicotinic receptors.


Asunto(s)
Guanidinas/química , Imidazoles/química , Insecticidas/química , Nitrocompuestos/química , Periplaneta/efectos de los fármacos , Piridinas/química , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Guanidinas/farmacología , Enlace de Hidrógeno , Imidazoles/farmacología , Insecticidas/farmacología , Masculino , Modelos Moleculares , Neonicotinoides , Nitrocompuestos/farmacología , Periplaneta/fisiología , Piridinas/farmacología , Teoría Cuántica , Receptores Nicotínicos/metabolismo
15.
Phys Chem Chem Phys ; 13(6): 2272-7, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21135942

RESUMEN

The gas phase structures of epibatidine, one of the most potent agonists of nicotinic acetylcholine receptors (nAChRs), are determined by means of infrared multiphoton dissociation (IRMPD) spectroscopy and quantum chemistry calculations. Comparison of the experimental and theoretical spectra provides evidence that about 15% of epibatidine is protonated on the Nsp(2) nitrogen in the gas phase. In contrast, the computational study of deschloroepibatidine shows that in the gas phase, the molecule is present only protonated on the Nsp(2) nitrogen. The main minima of the Nsp(2) protonated forms of the two molecules are strongly stabilized by intramolecular CH···Nsp(3) hydrogen bonds. The fundamental insights obtained in the present study on these two important nAChRs agonists show how subtle chemical modifications can have a deep impact on important physicochemical properties.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Gases/química , Protones , Piridinas/química , Espectrofotometría Infrarroja , Biología Computacional , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular
16.
Chemistry ; 16(39): 11876-89, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20839373

RESUMEN

Synthesis of alternating pyridine-pyrrole molecular strands composed of two electron-rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl-dipyridazine precursors. 2,6-Bis[6-(pyridazin-3-yl)]pyridine ligands 2a-c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross-coupling procedure. The yields of heterocyclic coupling between 2-pyridyl zinc bromide reagents 12a-c and 2,6-bis(6-trifluoromethanesulfonylpyridazin-3-yl)pyridine increased from 68 to 95% following introduction of electron-donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl-dipyridazines 2b,c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6-bis[5-(pyridin-2-yl)pyrrol-2-yl]pyridines 1b and 1c in good yields. The absorption behavior of the donor-acceptor tripyridyl-dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (ν(em)≈2 × 10(4) cm(-1) in MeOH and CH(2)Cl(2)), and both pyrrolic ligands exhibit a remarkable quantum yield in CH(2)Cl(2) (φ(f)=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol(-1). The ability of the tripyridyl-dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated.


Asunto(s)
Antineoplásicos/síntesis química , Cobre/química , Nitrógeno/química , Piridinas/síntesis química , Pirroles/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Catálisis , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Técnicas Electroquímicas , Femenino , Humanos , Ligandos , Masculino , Modelos Químicos , Estructura Molecular , Piridinas/química , Piridinas/farmacología , Pirroles/química , Pirroles/farmacología
17.
J Org Chem ; 75(12): 4105-23, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20491502

RESUMEN

The thermodynamics of the O-H...B hydrogen bond (HB) has been determined in CCl(4) by FTIR spectrometry for a wide variety of carbon pi bases, oxygen bases, and miscellaneous first- to fourth-row bases, using 4-fluorophenol as a reference hydrogen-bond donor (HBD). After inclusion of previously studied nitrogen, sulfur, and halogen bases, this 4-fluorophenol affinity scale contains 314 varied organic bases and ranges over 40 kJ mol(-1). The 4-fluorophenol affinity scale in CCl(4) is shown to be applicable to most HBDs in most media, provided a small family dependence is taken into account. The HB affinity orders are quantitatively established according to the atomic acceptor site or to its bearing functional group. A comprehensive survey of the influence of substituents on these affinity orders is then achieved, considering electronic and steric effects, as well as effects of vinylogy or iminology. Iminology is found to be more efficient than vinylogy for transmitting resonance effects. Steric effects are shown to be less important in HB affinity than in HB basicity since they mainly act on the HB entropy. The spatial proximity of two acceptor sites can favor complexation through three-center hydrogen bonds, leading to superhydrogen-bond bases on the affinity scale.

18.
ChemSusChem ; 13(7): 1844-1855, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-31995667

RESUMEN

The anchoring group of a sensitizer may strongly affect the overall properties and stability of the resulting dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthetic solar cells (DSPECs). The properties of seven perylene monoimide (PMI) dyes have been comprehensively studied for their immobilization on nanocrystalline NiO film. The PMI dyes differ only by the nature of the anchoring group, which are: carboxylic acid (PMI-CO2 H), phosphonic acid (PMI-PO3 H2 ), acetyl acetone (PMI-acac), pyridine (PMI-Py), aniline (PMI-NH2 ), hydroxyquinoline (PMI-HQ), and dipicolinic acid (PMI-DPA). The dyes are investigated by cyclic voltammetry and spectroelectrochemistry and modeled by TD-DFT quantum chemical calculations. The mode of binding of these anchoring groups is investigated by infrared spectroscopy and the stability of the binding to NiO surface is studied by desorption experiments in acidic and basic media. The phosphonic acid group is found to offer the strongest binding to the NiO surface in terms of stability and dye loading. Finally, a photophysical study by ultrafast transient absorption spectroscopy shows that all dyes inject a hole in NiO with rate constants on a subpicosecond timescale and display similar charge recombination kinetics. The photovoltaic properties of the dyes show that PMI-HQ and PMI-acac give the highest photovoltaic performances, owing to a lower degree of aggregation on the surface.

19.
Eur J Med Chem ; 189: 112082, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32000050

RESUMEN

We identified a new series of azole antifungal agents bearing a pyrrolotriazinone scaffold. These compounds exhibited a broad in vitro antifungal activity against pathogenic Candida spp. (fluconazole-susceptible and fluconazole-resistant) and were 10- to 100-fold more active than voriconazole against two Candida albicans isolates with known mechanisms of azole resistance (overexpression of efflux pumps and/or specific point substitutions in the Erg11p/CYP51 enzyme). Our lead compound 12 also displayed promising in vitro antifungal activity against some filamentous fungi such as Aspergillus fumigatus and the zygomycetes Rhizopus oryzae and Mucor circinelloides and an in vivo efficiency against two murine models of lethal systemic infections caused by Candida albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Triazinas/química , Animales , Antifúngicos/química , Candidiasis/microbiología , Farmacorresistencia Fúngica , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
20.
J Phys Chem B ; 119(7): 3174-84, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25629649

RESUMEN

For about 300 solvents, we propose a database of new solvent parameters describing empirically solute/solvent interactions: DI for dispersion and induction, ES for electrostatic interactions between permanent multipoles, α1 for solute Lewis base/solvent Lewis acid interactions, and ß1 for solute hydrogen-bond donor/solvent hydrogen-bond acceptor interactions. The main advantage over previous parametrizations is the easiness of extension of this database to newly designed solvents, since only three probes, the betaine dye 30, 4-fluorophenol, and 4-fluoroanisole are required. These parameters can be entered into the linear solvation energy relationship A = A0 + di(DI) + eES + aα1 + bß1 to predict a large number of varied physicochemical properties A and to rationalize the multiple intermolecular forces at the origin of solvent effects through a simple examination of the sign and magnitude of regression coefficients di, e, a, and b. Such a rationalization is illustrated for conformational and tautomeric equilibria and is supported by quantum-mechanical calculations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda