Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Paediatr Respir Rev ; 46: 63-70, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36828670

RESUMEN

Nontuberculous mycobacteria (NTM) can cause severe pulmonary disease in people with cystic fibrosis (pwCF). These infections present unique challenges for diagnosis and treatment, prompting a recent interest in understanding NTM transmission and pathogenesis during chronic infection. Major gaps remain in our knowledge regarding basic pathogenesis, immune evasion strategies, population dynamics, recombination potential, and the evolutionary implications of host and antibiotic pressures of long-term NTM infections in pwCF. Phylogenomic techniques have emerged as an important tool for tracking global patterns of transmission and are beginning to be used to ask fundamental biological questions about adaptation to the host during pathogenesis. In this review, we discuss the burden of NTM lung disease (NTM-LD), highlight the use of phylogenomics in NTM research, and address the clinical implications associated with these studies.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Infecciones del Sistema Respiratorio , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Filogenia , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Micobacterias no Tuberculosas/genética , Infecciones del Sistema Respiratorio/complicaciones
2.
Proc Natl Acad Sci U S A ; 116(52): 26925-26932, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818937

RESUMEN

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions.

3.
Proc Natl Acad Sci U S A ; 116(5): 1745-1754, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635416

RESUMEN

The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Virulencia/genética , Animales , Antibacterianos/farmacología , Niño , Clorhexidina/farmacología , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Genoma Bacteriano/genética , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Mupirocina/farmacología , Filogenia , Plásmidos/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
4.
Emerg Infect Dis ; 27(11): 2825-2835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34670645

RESUMEN

We typed 600 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 51 hospitals in the Rio de Janeiro, Brazil, metropolitan area during 2014-2017. We found that multiple new clonal complex (CC) 5 sequence types had replaced previously dominant MRSA lineages in hospitals. Whole-genome analysis of 208 isolates revealed an emerging sublineage of multidrug-resistant MRSA, sequence type 105, staphylococcal cassette chromosome mec II, spa t002, which we designated the Rio de Janeiro (RdJ) clone. Using molecular clock analysis, we hypothesized that this lineage began to expand in the Rio de Janeiro metropolitan area in 2009. Multivariate analysis supported an association between bloodstream infections and the CC5 lineage that includes the RdJ clone. Compared with other closely related isolates, representative isolates of the RdJ clone more effectively evaded immune function related to monocytic cells, as evidenced by decreased phagocytosis rate and increased numbers of viable unphagocytosed (free) bacteria after in vitro exposure to monocytes.


Asunto(s)
Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Bacteriemia/epidemiología , Brasil/epidemiología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Monocitos , Infecciones Estafilocócicas/epidemiología
5.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32690637

RESUMEN

Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.


Asunto(s)
Citocinas/inmunología , Interferón Tipo I/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Antibacterianos/farmacología , Carga Bacteriana , Proteínas Bacterianas/genética , Células Cultivadas , Farmacorresistencia Bacteriana/genética , Lisostafina/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Mutación , Neumonía Estafilocócica/inmunología , Neumonía Estafilocócica/microbiología , Transducción de Señal , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Vancomicina/farmacología , Virulencia
6.
BMC Genomics ; 20(1): 793, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666009

RESUMEN

BACKGROUND: Nontuberculous mycobacteria (NTM) are a major cause of pulmonary and systemic disease in at-risk populations. Gaps in knowledge about transmission patterns, evolution, and pathogenicity during infection have prompted a recent surge in genomic NTM research. Increased availability and affordability of whole genome sequencing (WGS) techniques provide new opportunities to sequence and construct complete bacterial genomes faster and at a lower cost. However, extracting large quantities of pure genomic DNA is particularly challenging with NTM due to its slow growth and recalcitrant cell wall. Here we report a DNA extraction protocol that is optimized for long-read WGS of NTM, yielding large quantities of highly pure DNA with no additional clean-up steps. RESULTS: Our DNA extraction method was compared to 6 other methods with variations in timing of mechanical disruption and enzymatic digestion of the cell wall, quantity of matrix material, and reagents used in extraction and precipitation. We tested our optimized method on 38 clinical isolates from the M. avium and M. abscessus complexes, which yielded optimal quality and quantity measurements for Oxford Nanopore Technologies sequencing. We also present the efficient completion of circularized M. avium subspecies hominissuis genomes using our extraction technique and the long-read sequencing MinION platform, including the identification of a novel plasmid. CONCLUSIONS: Our optimized extraction protocol and assembly pipeline was both sufficient and efficient for genome closure. We expect that our finely-tuned extraction method will prove to be a valuable tool in long-read sequencing and completion of mycobacterial genomes going forward. Utilization of comprehensive, long-read based approaches will advance the understanding evolution and pathogenicity of NTM infections.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Genoma Bacteriano , Micobacterias no Tuberculosas/genética , Secuenciación Completa del Genoma/métodos
7.
Environ Microbiol ; 20(4): 1576-1589, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29521441

RESUMEN

Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity.


Asunto(s)
Antibacterianos/toxicidad , Cobre/toxicidad , Farmacorresistencia Bacteriana/genética , Macrófagos/microbiología , Proteínas de Transporte de Membrana/genética , Staphylococcus aureus Resistente a Meticilina , Transferencia de Gen Horizontal/genética , Humanos , Inmunidad Innata/inmunología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Operón , Infecciones Estafilocócicas/microbiología
8.
Pediatr Dermatol ; 35(5): 660-665, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29974501

RESUMEN

OBJECTIVES: To assess the management and outcomes of vesicles and pustules in afebrile neonates presenting to the pediatric emergency department. METHODS: Using International Classification of Diseases, Ninth Revision, codes, we identified patients 0-60 days old presenting to our pediatric emergency department from 2008 to 2015 with a possible diagnosis of pustules or vesicles. We then used natural language processing followed by manual chart review to identify afebrile neonates with pustules or vesicles. We collected clinical data from the electronic medical record. We also assessed current practice patterns for neonatal pustules or vesicles using a survey administered to attending physicians. RESULTS: Of the 971 possible cases identified using International Classification of Diseases, Ninth Revision, codes for fluid-filled lesions, only 64 patients had vesicles (n = 9) and pustules (n = 55). One-third (22/64) of afebrile neonates with pustules and vesicles were admitted to the hospital and received empiric parenteral therapy. Admission, parenteral antibiotics, and antiviral therapy were more common in neonates presenting with vesicles than in those with pustules alone. Apart from 2 presumed blood culture contaminants, there were no positive blood or cerebrospinal fluid cultures. Two patients had positive urine cultures. Institutional survey data showed practice patterns consistent with these retrospective results. CONCLUSION: Although one-third of neonates with pustules and vesicles were admitted to the hospital and received parenteral therapy, there were no cerebrospinal fluid or blood infections or any confirmed evidence of herpes simplex virus disease. These findings suggest that afebrile, well-appearing neonates presenting with pustules alone may not need a full serious bacterial infection examination. Larger studies are needed to confirm these findings and assess outcomes, especially in afebrile neonates with vesicles.


Asunto(s)
Servicio de Urgencia en Hospital/estadística & datos numéricos , Exantema/tratamiento farmacológico , Pautas de la Práctica en Medicina/estadística & datos numéricos , Exantema/diagnóstico , Femenino , Fiebre , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos
9.
Pediatr Dermatol ; 35(1): 92-96, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29105824

RESUMEN

BACKGROUND/OBJECTIVES: Many patients with epidermolysis bullosa (EB) require intensive daily wound care and individualized treatment plans. Understanding patient's home skin care routines and emerging antibiotic resistance patterns in EB wounds is necessary to optimize treatment recommendations. The objective was to identify patterns of antimicrobial resistance in EB wounds and characterize patient's home practices of skin care and bathing. METHODS: This was an observational study of 23 children with EB at an outpatient pediatric dermatology practice in New York City from 2012 to 2014. Information on individual bathing and skin care practices and wound cultures was collected as part of routine examinations and an institutional review board-approved antibiogram protocol. RESULTS: Sixty wound cultures were collected from 23 patients. Eleven organisms were isolated, most commonly methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, Streptococcus species, and Pseudomonas aeruginosa. Six patients (26%) were colonized with methicillin-resistant S. aureus. Over the course of the study, 13 patients (56%) were found to have mupirocin-resistant S. aureus. More than half of participants reported mupirocin or bacitracin use. Fewer than half indicated that they regularly used dilute bleach or dilute vinegar as part of their bathing routine. CONCLUSION: Numerous organisms, including resistant bacteria, are known to colonize the wounds of individuals with EB. Mupirocin resistance was prevalent and more than half of the participants reported its use. Testing for mupirocin resistance may be considered for certain patients. These observations may help guide questions for future longitudinal multicenter studies with the goal of optimizing EB wound care recommendations.


Asunto(s)
Antibacterianos/administración & dosificación , Farmacorresistencia Bacteriana , Epidermólisis Ampollosa/microbiología , Cuidados de la Piel/estadística & datos numéricos , Infección de Heridas/microbiología , Baños/estadística & datos numéricos , Cuidadores , Niño , Preescolar , Epidermólisis Ampollosa/complicaciones , Epidermólisis Ampollosa/terapia , Femenino , Humanos , Lactante , Masculino , Pruebas de Sensibilidad Microbiana/estadística & datos numéricos , Ciudad de Nueva York , Cuidados de la Piel/métodos , Infección de Heridas/terapia
10.
J Infect Dis ; 215(suppl_1): S71-S77, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28375517

RESUMEN

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is largely attributable to the meteoric rise of a single clone, referred to as USA300. This strain not only spread across the United States in just a few years to become the predominant cause of staphylococcal disease, but it also appears to have increased the overall number of skin and soft-tissue infections (SSTIs), increasing the overall disease burden. While USA300 still constitutes a major public health burden, its prevalence may be decreasing in some parts of the United States. Other than an epidemic in South America due to a closely related strain, USA300 also seems to have been largely unable to establish itself as an endemic infection in other geographic locations. While there have been several hypotheses put forward to explain the enormous success of USA300, the reasons for its failures and its potential fall remain obscure. Far from being unique to USA300, the rise and fall of specific clones of S. aureus in human populations seems to be a common process that has occurred multiple times and in multiple locations. This review charts the rise of USA300 and the evidence that suggests that it may be in decline, and it considers how best to understand the future spread, containment, and possible extinction of CA-MRSA.


Asunto(s)
Infecciones Comunitarias Adquiridas/epidemiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones de los Tejidos Blandos/epidemiología , Infecciones Estafilocócicas/epidemiología , Antibacterianos/farmacología , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/microbiología , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Infecciones de los Tejidos Blandos/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Estados Unidos/epidemiología
11.
J Infect Dis ; 217(1): 82-92, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29029188

RESUMEN

Background: Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods: We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results: Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions: The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Epidemias , Evolución Molecular , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Ciudades/epidemiología , Colombia/epidemiología , ADN Bacteriano/química , ADN Bacteriano/genética , Transmisión de Enfermedad Infecciosa , Transferencia de Gen Horizontal , Humanos , Secuencias Repetitivas Esparcidas , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/aislamiento & purificación , Epidemiología Molecular , Filogenia , Análisis de Secuencia de ADN , Centros de Atención Terciaria , Secuenciación Completa del Genoma
12.
Artículo en Inglés | MEDLINE | ID: mdl-28760895

RESUMEN

Staphylococcus aureus is an important pathogen causing a spectrum of diseases ranging from mild skin and soft tissue infections to life-threatening conditions. Bloodstream infections are particularly important, and the treatment approach is complicated by the presence of methicillin-resistant S. aureus (MRSA) isolates. The emergence of new genetic lineages of MRSA has occurred in Latin America (LA) with the rise and dissemination of the community-associated USA300 Latin American variant (USA300-LV). Here, we prospectively characterized bloodstream MRSA recovered from selected hospitals in 9 Latin American countries. All isolates were typed by pulsed-field gel electrophoresis (PFGE) and subjected to antibiotic susceptibility testing. Whole-genome sequencing was performed on 96 MRSA representatives. MRSA represented 45% of all (1,185 S. aureus) isolates. The majority of MRSA isolates belonged to clonal cluster (CC) 5. In Colombia and Ecuador, most isolates (≥72%) belonged to the USA300-LV lineage (CC8). Phylogenetic reconstructions indicated that MRSA isolates from participating hospitals belonged to three major clades. Clade A grouped isolates with sequence type 5 (ST5), ST105, and ST1011 (mostly staphylococcal chromosomal cassette mec [SCCmec] I and II). Clade B included ST8, ST88, ST97, and ST72 strains (SCCmec IV, subtypes a, b, and c/E), and clade C grouped mostly Argentinian MRSA belonging to ST30. In summary, CC5 MRSA was prevalent in bloodstream infections in LA with the exception of Colombia and Ecuador, where USA300-LV is now the dominant lineage. Clonal replacement appears to be a common phenomenon, and continuous surveillance is crucial to identify changes in the molecular epidemiology of MRSA.


Asunto(s)
Bacteriemia/epidemiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/epidemiología , Antibacterianos/farmacología , Bacteriemia/microbiología , Genoma Bacteriano/genética , Humanos , América Latina , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Estudios Prospectivos , Infecciones Estafilocócicas/microbiología
13.
N Engl J Med ; 370(16): 1524-31, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24738669

RESUMEN

We report the case of a patient from Brazil with a bloodstream infection caused by a strain of methicillin-resistant Staphylococcus aureus (MRSA) that was susceptible to vancomycin (designated BR-VSSA) but that acquired the vanA gene cluster during antibiotic therapy and became resistant to vancomycin (designated BR-VRSA). Both strains belong to the sequence type (ST) 8 community-associated genetic lineage that carries the staphylococcal chromosomal cassette mec (SCCmec) type IVa and the S. aureus protein A gene (spa) type t292 and are phylogenetically related to MRSA lineage USA300. A conjugative plasmid of 55,706 bp (pBRZ01) carrying the vanA cluster was identified and readily transferred to other staphylococci. The pBRZ01 plasmid harbors DNA sequences that are typical of the plasmid-associated replication genes rep24 or rep21 described in community-associated MRSA strains from Australia (pWBG745). The presence and dissemination of community-associated MRSA containing vanA could become a serious public health concern.


Asunto(s)
Bacteriemia/microbiología , Staphylococcus aureus Resistente a Meticilina/genética , Resistencia a la Vancomicina/genética , Adulto , Brasil , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Micosis Fungoide/complicaciones , Plásmidos/genética , Análisis de Secuencia de ADN
14.
BMC Genomics ; 17(1): 947, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871225

RESUMEN

BACKGROUND: Whole genome sequencing (WGS) has rapidly become an important research tool in tuberculosis epidemiology and is likely to replace many existing methods in public health microbiology in the near future. WGS-based methods may be particularly useful in areas with less diverse Mycobacterium tuberculosis populations, such as New York City, where conventional genotyping is often uninformative and field epidemiology often difficult. This study applies four candidate strategies for WGS-based identification of emerging M. tuberculosis subpopulations, employing both phylogenomic and population genetics methods. RESULTS: M. tuberculosis subpopulations in New York City and New Jersey can be distinguished via phylogenomic reconstruction, evidence of demographic expansion and subpopulation-specific signatures of selection, and by determination of subgroup-defining nucleotide substitutions. These methods identified known historical outbreak clusters and previously unidentified subpopulations within relatively monomorphic M. tuberculosis endemic clone groups. Neutrality statistics based on the site frequency spectrum were less useful for identifying M. tuberculosis subpopulations, likely due to the low levels of informative genetic variation in recently diverged isolate groups. In addition, we observed that isolates from New York City endemic clone groups have acquired multiple non-synonymous SNPs in virulence- and growth-associated pathways, and relatively few mutations in drug resistance-associated genes, suggesting that overall pathoadaptive fitness, rather than the acquisition of drug resistance mutations, has played a central role in the evolutionary history and epidemiology of M. tuberculosis subpopulations in New York City. CONCLUSIONS: Our results demonstrate that some but not all WGS-based methods are useful for detection of emerging M. tuberculosis clone groups, and support the use of phylogenomic reconstruction in routine tuberculosis laboratory surveillance, particularly in areas with relatively less diverse M. tuberculosis populations. Our study also supports the use of wider-reaching phylogenomic and population genomic methods in tuberculosis public health practice, which can support tuberculosis control activities by identifying genetic polymorphisms contributing to epidemiological success in local M. tuberculosis populations and possibly explain why certain isolate groups are apparently more successful in specific host populations.


Asunto(s)
Genoma Bacteriano , Genómica , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Tuberculosis/epidemiología , Tuberculosis/microbiología , Pared Celular/genética , Pared Celular/metabolismo , Farmacorresistencia Bacteriana , Genómica/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Metabolismo de los Lípidos , Epidemiología Molecular , Mycobacterium tuberculosis/metabolismo , New Jersey/epidemiología , Ciudad de Nueva York/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética , Tuberculosis/historia
15.
PLoS Pathog ; 10(2): e1003951, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586160

RESUMEN

The tremendous success of S. aureus as a human pathogen has been explained primarily by its array of virulence factors that enable the organism to evade host immunity. Perhaps equally important, but less well understood, is the importance of the intensity of the host response in determining the extent of pathology induced by S. aureus infection, particularly in the pathogenesis of pneumonia. We compared the pathogenesis of infection caused by two phylogenetically and epidemiologically distinct strains of S. aureus whose behavior in humans has been well characterized. Induction of the type I IFN cascade by strain 502A, due to a NOD2-IRF5 pathway, was the major factor in causing severe pneumonia and death in a murine model of pneumonia and was associated with autolysis and release of peptidogylcan. In contrast to USA300, 502A was readily eliminated from epithelial surfaces in vitro. Nonetheless, 502A caused significantly increased tissue damage due to the organisms that were able to invade systemically and trigger type I IFN responses, and this was ameliorated in Ifnar⁻/⁻ mice. The success of USA300 to cause invasive infection appears to depend upon its resistance to eradication from epithelial surfaces, but not production of specific toxins. Our studies illustrate the important and highly variable role of type I IFN signaling within a species and suggest that targeted immunomodulation of specific innate immune signaling cascades may be useful to prevent the excessive morbidity associated with S. aureus pneumonia.


Asunto(s)
Interferón Tipo I/inmunología , Transducción de Señal/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Modelos Animales de Enfermedad , Immunoblotting , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Virulencia
17.
J Infect Dis ; 211(5): 835-45, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25240171

RESUMEN

We postulated that the activation of proinflammatory signaling by methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 is a major factor in the pathogenesis of severe pneumonia and a target for immunomodulation. Local activation of T cells in the lung was a conserved feature of multiple strains of S. aureus, in addition to USA300. The pattern of Vß chain activation was consistent with known superantigens, but deletion of SelX or SEK and SEQ was not sufficient to prevent T-cell activation, indicating the participation of multiple genes. Using Rag2(-/-), Cd4(-/-), and Cd28(-/-) mice, we observed significantly improved clearance of MRSA from the airways and decreased lung pathology, compared with findings for wild-type controls. The improved outcome correlated with decreased production of proinflammatory cytokines (tumor necrosis factor, KC, interleukin 6, and interleukin 1ß). Our data suggest that T-cell-mediated hypercytokinemia induced by infection with MRSA strain USA300 contributes to pathogenesis and may be a therapeutic target for improving outcomes of this common infection in a clinical setting.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Citocinas/metabolismo , Staphylococcus aureus Resistente a Meticilina/inmunología , Neumonía Estafilocócica/inmunología , Neumonía Estafilocócica/patología , Animales , Antígenos CD28/deficiencia , Antígenos CD4/genética , Citocinas/sangre , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Superantígenos/genética , Superantígenos/inmunología
18.
J Infect Dis ; 212(12): 1874-82, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26048971

RESUMEN

BACKGROUND: The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics. METHODS: We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades. RESULTS: Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had a putative common ancestor in 1975, and originated in 1989, in North America, and in 1985, in South America. Emergence of these parallel epidemics coincides with the independent acquisition of the arginine catabolic mobile element (ACME) in North American isolates and a novel copper and mercury resistance (COMER) mobile element in South American isolates. CONCLUSIONS: Our results reveal the existence of 2 parallel USA300 epidemics that shared a recent common ancestor. The simultaneous rapid dissemination of these 2 epidemic clades suggests the presence of shared, potentially convergent adaptations that enhance fitness and ability to spread.


Asunto(s)
Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Epidemias , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Monitoreo Epidemiológico , Genoma Bacteriano , Genotipo , Humanos , Epidemiología Molecular , Tipificación Molecular , América del Norte/epidemiología , Filogeografía , Análisis de Secuencia de ADN , América del Sur/epidemiología
19.
Emerg Infect Dis ; 21(10): 1844-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26402569

RESUMEN

We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana/estadística & datos numéricos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología , Bacteriemia/microbiología , Brasil/epidemiología , Humanos , Meticilina/farmacología , Meticilina/uso terapéutico , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación , Vancomicina/uso terapéutico , Resistencia a la Vancomicina/inmunología
20.
Mol Microbiol ; 93(4): 664-81, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24962815

RESUMEN

Staphylococcus aureus has evolved as a pathogen that causes a range of diseases in humans. There are two dominant modes of evolution thought to explain most of the virulence differences between strains. First, virulence genes may be acquired from other organisms. Second, mutations may cause changes in the regulation and expression of genes. Here we describe an evolutionary event in which transposition of an IS element has a direct impact on virulence gene regulation resulting in hypervirulence. Whole-genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 revealed acquisition of a transposable element (IS256) that is absent from close relatives of this strain. Of the multiple copies of IS256 found in the USA500 genome, one was inserted in the promoter sequence of repressor of toxins (Rot), a master transcriptional regulator responsible for the expression of virulence factors in S. aureus. We show that insertion into the rot promoter by IS256 results in the derepression of cytotoxin expression and increased virulence. Taken together, this work provides new insight into evolutionary strategies by which S. aureus is able to modify its virulence properties and demonstrates a novel mechanism by which horizontal gene transfer directly impacts virulence through altering toxin regulation.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/genética , Recombinación Genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Análisis de Secuencia de ADN , Virulencia , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda