Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genet Med ; 26(7): 101143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641995

RESUMEN

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.


Asunto(s)
Mutación con Pérdida de Función , Microcefalia , Hipotonía Muscular , Trastornos del Neurodesarrollo , Linaje , Humanos , Microcefalia/genética , Microcefalia/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Masculino , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Femenino , Preescolar , Mutación con Pérdida de Función/genética , Alelos , Niño , Lactante , Secuenciación del Exoma , Fibroblastos/metabolismo , Fibroblastos/patología , Autofagia/genética
2.
Dev Biol ; 476: 148-170, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33826923

RESUMEN

We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.


Asunto(s)
Adhesión Celular/fisiología , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Inhibidores de Serina Proteinasa/metabolismo , Animales , Cadherinas , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Epidermis/metabolismo , Células Epiteliales/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Organogénesis , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Inhibidores de Serina Proteinasa/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Development ; 145(9)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29650589

RESUMEN

Zebrafish mutants with increased retinoic acid (RA) signaling due to the loss of the RA-inactivating enzyme Cyp26b1 develop a hyper-mineralized spine with gradually fusing vertebral body precursors (centra). However, the underlying cellular mechanisms remain incompletely understood. Here, we show that cells of the notochord epithelium named chordoblasts are sensitive to RA signaling. Chordoblasts are uniformly distributed along the anteroposterior axis and initially generate the continuous collagenous notochord sheath. However, subsequently and iteratively, subsets of these cells undergo further RA-dependent differentiation steps, acquire a stellate-like shape, downregulate expression of the collagen gene col2a1a, switch on cyp26b1 expression and trigger metameric sheath mineralization. This mineralization fails to appear upon chordoblast-specific cell ablation or RA signal transduction blockade. Together, our data reveal that, despite their different developmental origins, the activities and regulation of chordoblasts are very similar to those of osteoblasts, including their RA-induced transition from osteoid-producing cells to osteoid-mineralizing ones. Furthermore, our data point to a requirement for locally controlled RA activity within the chordoblast layer in order to generate the segmented vertebral column.


Asunto(s)
Calcificación Fisiológica/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Notocorda/embriología , Columna Vertebral/embriología , Tretinoina/metabolismo , Pez Cebra/embriología , Animales , Colágeno/biosíntesis , Colágeno/genética , Notocorda/citología , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Columna Vertebral/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Ann Neurol ; 86(3): 368-383, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31298765

RESUMEN

OBJECTIVE: Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS: Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS: We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION: SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.


Asunto(s)
Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Mitocondriales/genética , Atrofia Óptica Autosómica Dominante/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Ligamiento Genético/genética , Humanos , Masculino , Ratones , Mutación Missense , Atrofia Óptica Autosómica Dominante/patología , Linaje , ARN Mensajero/genética , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Pez Cebra/genética
5.
Development ; 140(5): 1111-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23404108

RESUMEN

The neurohypophysis is a crucial component of the hypothalamo-pituitary axis, serving as the site of release of hypothalamic neurohormones into a plexus of hypophyseal capillaries. The growth of hypothalamic axons and capillaries to the forming neurohypophysis in embryogenesis is therefore crucial to future adult homeostasis. Using ex vivo analyses in chick and in vivo analyses in mutant and transgenic zebrafish, we show that Fgf10 and Fgf3 secreted from the forming neurohypophysis exert direct guidance effects on hypothalamic neurosecretory axons. Simultaneously, they promote hypophyseal vascularisation, exerting early direct effects on endothelial cells that are subsequently complemented by indirect effects. Together, our studies suggest a model for the integrated neurohemal wiring of the hypothalamo-neurohypophyseal axis.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/fisiología , Factor 3 de Crecimiento de Fibroblastos/fisiología , Neovascularización Fisiológica/genética , Neurohipófisis/irrigación sanguínea , Neurohipófisis/inervación , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Embrión de Pollo/irrigación sanguínea , Embrión de Pollo/inervación , Embrión de Pollo/metabolismo , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/inervación , Embrión no Mamífero/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Sistema Hipotálamo-Hipofisario/irrigación sanguínea , Sistema Hipotálamo-Hipofisario/embriología , Sistema Hipotálamo-Hipofisario/metabolismo , Modelos Biológicos , Neovascularización Fisiológica/fisiología , Neurohipófisis/embriología , Vertebrados/embriología , Vertebrados/genética , Vertebrados/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Am J Hum Genet ; 91(5): 919-27, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23084290

RESUMEN

A subset of nuclear-encoded RNAs has to be imported into mitochondria for the proper replication and transcription of the mitochondrial genome and, hence, for proper mitochondrial function. Polynucleotide phosphorylase (PNPase or PNPT1) is one of the very few components known to be involved in this poorly characterized process in mammals. At the organismal level, however, the effect of PNPase dysfunction and impaired mitochondrial RNA import are unknown. By positional cloning, we identified a homozygous PNPT1 missense mutation (c.1424A>G predicting the protein substitution p.Glu475Gly) of a highly conserved PNPase residue within the second RNase-PH domain in a family affected by autosomal-recessive nonsyndromic hearing impairment. In vitro analyses in bacteria, yeast, and mammalian cells showed that the identified mutation results in a hypofunctional protein leading to disturbed PNPase trimerization and impaired mitochondrial RNA import. Immunohistochemistry revealed strong PNPase staining in the murine cochlea, including the sensory hair cells and the auditory ganglion neurons. In summary, we show that a component of the mitochondrial RNA-import machinery is specifically required for auditory function.


Asunto(s)
Exorribonucleasas/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Transporte de ARN/genética , ARN/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Mapeo Cromosómico , Cóclea/metabolismo , Cóclea/patología , Consanguinidad , Exones , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Femenino , Expresión Génica , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Conformación Proteica , ARN Mitocondrial , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Am J Hum Genet ; 89(5): 595-606, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22019272

RESUMEN

Excess exogenous retinoic acid (RA) has been well documented to have teratogenic effects in the limb and craniofacial skeleton. Malformations that have been observed in this context include craniosynostosis, a common developmental defect of the skull that occurs in 1 in 2500 individuals and results from premature fusion of the cranial sutures. Despite these observations, a physiological role for RA during suture formation has not been demonstrated. Here, we present evidence that genetically based alterations in RA signaling interfere with human development. We have identified human null and hypomorphic mutations in the gene encoding the RA-degrading enzyme CYP26B1 that lead to skeletal and craniofacial anomalies, including fusions of long bones, calvarial bone hypoplasia, and craniosynostosis. Analyses of murine embryos exposed to a chemical inhibitor of Cyp26 enzymes and zebrafish lines with mutations in cyp26b1 suggest that the endochondral bone fusions are due to unrestricted chondrogenesis at the presumptive sites of joint formation within cartilaginous templates, whereas craniosynostosis is induced by a defect in osteoblastic differentiation. Ultrastructural analysis, in situ expression studies, and in vitro quantitative RT-PCR experiments of cellular markers of osseous differentiation indicate that the most likely cause for these phenomena is aberrant osteoblast-osteocyte transitioning. This work reveals a physiological role for RA in partitioning skeletal elements and in the maintenance of cranial suture patency.


Asunto(s)
Suturas Craneales , Craneosinostosis , Sistema Enzimático del Citocromo P-450 , Tretinoina , Proteínas de Pez Cebra/genética , Animales , Diferenciación Celular , Suturas Craneales/efectos de los fármacos , Suturas Craneales/embriología , Suturas Craneales/crecimiento & desarrollo , Suturas Craneales/patología , Craneosinostosis/enzimología , Craneosinostosis/genética , Craneosinostosis/patología , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/genética , Modelos Animales de Enfermedad , Femenino , Muerte Fetal/genética , Regulación del Desarrollo de la Expresión Génica , Crecimiento y Desarrollo/genética , Humanos , Ratones , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Polimorfismo Genético/genética , Embarazo , Ácido Retinoico 4-Hidroxilasa , Homología de Secuencia de Aminoácido , Tretinoina/metabolismo , Tretinoina/farmacología , Pez Cebra/embriología , Pez Cebra/genética
8.
Am J Hum Genet ; 88(2): 127-37, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21255762

RESUMEN

By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.


Asunto(s)
Codón sin Sentido/genética , Genes Recesivos/genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Receptores de Superficie Celular/genética , Animales , Mapeo Cromosómico , Cromosomas Humanos Par 3/genética , Consanguinidad , Oído Interno , Femenino , Ligamiento Genético , Genotipo , Humanos , Hibridación in Situ , Escala de Lod , Masculino , Ratones , Linaje , Pez Cebra
9.
Nat Methods ; 8(6): 506-15, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21552255

RESUMEN

We describe a conditional in vivo protein-trap mutagenesis system that reveals spatiotemporal protein expression dynamics and can be used to assess gene function in the vertebrate Danio rerio. Integration of pGBT-RP2.1 (RP2), a gene-breaking transposon containing a protein trap, efficiently disrupts gene expression with >97% knockdown of normal transcript amounts and simultaneously reports protein expression for each locus. The mutant alleles are revertible in somatic tissues via Cre recombinase or splice-site-blocking morpholinos and are thus to our knowledge the first systematic conditional mutant alleles outside the mouse model. We report a collection of 350 zebrafish lines that include diverse molecular loci. RP2 integrations reveal the complexity of genomic architecture and gene function in a living organism and can provide information on protein subcellular localization. The RP2 mutagenesis system is a step toward a unified 'codex' of protein expression and direct functional annotation of the vertebrate genome.


Asunto(s)
Mutagénesis Insercional/métodos , Proteoma/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Modelos Animales , Datos de Secuencia Molecular , Proteómica/métodos
10.
Front Endocrinol (Lausanne) ; 14: 1107339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223044

RESUMEN

The vertebral column, with the centra as its iteratively arranged building blocks, represents the anatomical key feature of the vertebrate phylum. In contrast to amniotes, where vertebrae are formed from chondrocytes and osteoblasts deriving from the segmentally organized neural crest or paraxial sclerotome, teleost vertebral column development is initiated by chordoblasts of the primarily unsegmented axial notochord, while sclerotomal cells only contribute to later steps of vertebrae formation. Yet, for both mammalian and teleostean model systems, unrestricted signaling by Bone Morphogenetic Proteins (BMPs) or retinoic acid (RA) has been reported to cause fusions of vertebral elements, while the interplay of the two signaling processes and their exact cellular targets remain largely unknown. Here, we address this interplay in zebrafish, identifying BMPs as potent and indispensable factors that, as formerly shown for RA, directly signal to notochord epithelial cells/chordoblasts to promote entpd5a expression and thereby metameric notochord sheath mineralization. In contrast to RA, however, which promotes sheath mineralization at the expense of further collagen secretion and sheath formation, BMP defines an earlier transitory stage of chordoblasts, characterized by sustained matrix production/col2a1 expression and concomitant matrix mineralization/entpd5a expression. BMP-RA epistasis analyses further indicate that RA can only affect chordoblasts and their further progression to merely mineralizing cells after they have received BMP signals to enter the transitory col2a1/entpd5a double-positive stage. This way, both signals ensure consecutively for proper mineralization of the notochord sheath within segmented sections along its anteroposterior axis. Our work sheds further light onto the molecular mechanisms that orchestrate early steps of vertebral column segmentation in teleosts. Similarities and differences to BMP's working mechanisms during mammalian vertebral column formation and the pathomechanisms underlying human bone diseases such as Fibrodysplasia Ossificans Progressiva (FOP) caused by constitutively active BMP signaling are discussed.


Asunto(s)
Enfermedades Óseas , Calcinosis , Humanos , Animales , Pez Cebra , Notocorda , Transducción de Señal , Cognición , Mamíferos
11.
Matrix Biol ; 112: 132-154, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36007682

RESUMEN

Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.


Asunto(s)
Laminina , Pez Cebra , Animales , Membrana Basal/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Laminina/genética , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo
12.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980486

RESUMEN

CpG islands (CGIs) are key regulatory DNA elements at most promoters, but how they influence the chromatin status and transcription remains elusive. Here, we identify and characterize SAMD1 (SAM domain-containing protein 1) as an unmethylated CGI-binding protein. SAMD1 has an atypical winged-helix domain that directly recognizes unmethylated CpG-containing DNA via simultaneous interactions with both the major and the minor groove. The SAM domain interacts with L3MBTL3, but it can also homopolymerize into a closed pentameric ring. At a genome-wide level, SAMD1 localizes to H3K4me3-decorated CGIs, where it acts as a repressor. SAMD1 tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs, thereby providing a mechanism for SAMD1-mediated transcriptional repression. The absence of SAMD1 impairs ES cell differentiation processes, leading to misregulation of key biological pathways. Together, our work establishes SAMD1 as a newly identified chromatin regulator acting at unmethylated CGIs.


Asunto(s)
Cromatina , Motivo alfa Estéril , Cromatina/genética , Islas de CpG , ADN/metabolismo , Metilación de ADN
13.
Curr Biol ; 16(7): 636-48, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-16581508

RESUMEN

BACKGROUND: Myelinated axons are essential for rapid conduction of action potentials in the vertebrate nervous system. Of particular importance are the nodes of Ranvier, sites of voltage-gated sodium channel clustering that allow action potentials to be propagated along myelinated axons by saltatory conduction. Despite their critical role in the function of myelinated axons, little is known about the mechanisms that organize the nodes of Ranvier. RESULTS: Starting with a forward genetic screen in zebrafish, we have identified an essential requirement for nsf (N-ethylmaleimide sensitive factor) in the organization of myelinated axons. Previous work has shown that NSF is essential for membrane fusion in eukaryotes and has a critical role in vesicle fusion at chemical synapses. Zebrafish nsf mutants are paralyzed and have impaired response to light, reflecting disrupted nsf function in synaptic transmission and neural activity. In addition, nsf mutants exhibit defects in Myelin basic protein expression and in localization of sodium channel proteins at nodes of Ranvier. Analysis of chimeric larvae indicates that nsf functions autonomously in neurons, such that sodium channel clusters are evident in wild-type neurons transplanted into the nsf mutant hosts. Through pharmacological analyses, we show that neural activity and function of chemical synapses are not required for sodium channel clustering and myelination in the larval nervous system. CONCLUSIONS: Zebrafish nsf mutants provide a novel vertebrate system to investigate Nsf function in vivo. Our results reveal a previously unknown role for nsf, independent of its function in synaptic vesicle fusion, in the formation of the nodes of Ranvier in the vertebrate nervous system.


Asunto(s)
Proteínas Sensibles a N-Etilmaleimida/fisiología , Nódulos de Ranvier/ultraestructura , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Potenciales de Acción/fisiología , Animales , Muerte Celular/fisiología , Quimera/metabolismo , Marcadores Genéticos , Células Ciliadas Auditivas/fisiología , Larva/anatomía & histología , Larva/genética , Larva/metabolismo , Movimiento/fisiología , Mutación , Proteína Básica de Mielina/genética , Proteínas Sensibles a N-Etilmaleimida/genética , Fenotipo , ARN Mensajero/metabolismo , Nódulos de Ranvier/metabolismo , Canales de Sodio/fisiología , Transmisión Sináptica/fisiología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
14.
Curr Biol ; 15(6): 513-24, 2005 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-15797019

RESUMEN

BACKGROUND: Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferation, survival, migration, or the onset of myelination. RESULTS: In genetic screens for mutants with disruptions in myelinated nerves, we identified mutations in erbb3 and erbb2, which together encode a heteromeric tyrosine kinase receptor for Neuregulin ligands. Phenotypic analysis shows that both genes are essential for development of Schwann cells. BrdU-incorporation studies and time-lapse analysis reveal that Schwann cell proliferation and migration, but not survival, are disrupted in erbb3 mutants. We show that Schwann cells can migrate in the absence of DNA replication. This uncoupling of proliferation and migration indicates that erbb gene function is required independently for these two processes. Pharmacological inhibition of ErbB signaling at different stages reveals a continuing requirement for ErbB function during migration and also provides evidence that ErbB signaling is required after migration for proliferation and the terminal differentiation of myelinating Schwann cells. CONCLUSIONS: These results provide in vivo evidence that Neuregulin-ErbB signaling is essential for directed Schwann cell migration and demonstrate that this pathway is also required for the onset of myelination in postmigratory Schwann cells.


Asunto(s)
Movimiento Celular/fisiología , Genes erbB-2/genética , Genes erbB/genética , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Transducción de Señal/fisiología , Pez Cebra/fisiología , Animales , Afidicolina/farmacología , Secuencia de Bases , Bromodesoxiuridina , División Celular/efectos de los fármacos , Mapeo Cromosómico , ADN Complementario/genética , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Mutación/genética , Neurregulina-1/metabolismo , Células de Schwann/fisiología , Análisis de Secuencia de ADN , Pez Cebra/genética
15.
PLoS One ; 13(1): e0191224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29351342

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.


Asunto(s)
Biomarcadores de Tumor/genética , Síndrome de Fraser/genética , Mutación Missense , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Biomarcadores de Tumor/química , Proteínas de Unión al Calcio , Niño , Consanguinidad , Secuencia Conservada , Exones , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Humanos , Masculino , Ratones , Modelos Animales , Modelos Moleculares , Linaje , Homología de Secuencia de Aminoácido , Sistema Urogenital/crecimiento & desarrollo , Sistema Urogenital/metabolismo
16.
Mol Cell Endocrinol ; 312(1-2): 2-13, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19728983

RESUMEN

The anterior pituitary gland, or adenohypophysis (AH), represents the key component of the vertebrate hypothalamo-hypophyseal axis, where it functions at the interphase of the nervous and endocrine system to regulate basic body functions like growth, metabolism and reproduction. For developmental biologists, the adenohypophysis serves as an excellent model system for the studies of organogenesis and differential cell fate specification. Previous research, mainly done in mouse, identified numerous extrinsic signaling cues and intrinsic transcription factors that orchestrate the gland's developmental progression. In the past years, the zebrafish has emerged as a powerful tool to elucidate the genetic networks controlling vertebrate development, behavior and disease. Based on mutants isolated in forward genetic screens and on gene knock-downs using morpholino oligonucleotide (oligo) antisense technology, our current understanding of the molecular machinery driving adenohypophyseal ontogeny could be considerably improved. In addition, comparative analyses have shed further light onto the evolution of this rather recently invented organ. The goal of this review is to summarize current knowledge of the genetic and molecular control of zebrafish pituitary development, with special focus on most recent findings, including some thus far unpublished data from our own laboratory on the transcription factor Six1. In addition, zebrafish data will be discussed in comparison with current understanding of adenohypophysis development in mouse.


Asunto(s)
Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Adenohipófisis/crecimiento & desarrollo , Hipófisis/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Sistema Hipotálamo-Hipofisario/embriología , Ratones , Modelos Animales , Hipófisis/embriología , Adenohipófisis/embriología , Adenohipófisis/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Mol Cell Biol ; 29(11): 3173-85, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19307306

RESUMEN

PLRG1, an evolutionarily conserved component of the spliceosome, forms a complex with Pso4/SNEV/Prp19 and the cell division and cycle 5 homolog (CDC5L) that is involved in both pre-mRNA splicing and DNA repair. Here, we show that the inactivation of PLRG1 in mice results in embryonic lethality at 1.5 days postfertilization. Studies of heart- and neuron-specific PLRG1 knockout mice further reveal an essential role of PLRG1 in adult tissue homeostasis and the suppression of apoptosis. PLRG1-deficient mouse embryonic fibroblasts (MEFs) fail to progress through S phase upon serum stimulation and exhibit increased rates of apoptosis. PLRG1 deficiency causes enhanced p53 phosphorylation and stabilization in the presence of increased gamma-H2AX immunoreactivity as an indicator of an activated DNA damage response. p53 downregulation rescues lethality in both PLRG1-deficient MEFs and zebrafish in vivo, showing that apoptosis resulting from PLRG1 deficiency is p53 dependent. Moreover, the deletion of PLRG1 results in the relocation of its interaction partner CDC5L from the nucleus to the cytoplasm without general alterations in pre-mRNA splicing. Taken together, the results of this study identify PLRG1 as a critical nuclear regulator of p53-dependent cell cycle progression and apoptosis during both embryonic development and adult tissue homeostasis.


Asunto(s)
Apoptosis , Desarrollo Embrionario , Homeostasis , Proteínas Nucleares/metabolismo , Vertebrados/embriología , Proteínas de Pez Cebra/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Cruzamientos Genéticos , Citoplasma/metabolismo , Pérdida del Embrión/metabolismo , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Masculino , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/deficiencia , Especificidad de Órganos , Transporte de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia
18.
Semin Cell Dev Biol ; 18(4): 543-58, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17560816

RESUMEN

The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.


Asunto(s)
Hipófisis/embriología , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Evolución Molecular , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Hipófisis/crecimiento & desarrollo , Hipófisis/metabolismo , Adenohipófisis/embriología , Adenohipófisis/crecimiento & desarrollo , Adenohipófisis/metabolismo , Neurohipófisis/embriología , Neurohipófisis/crecimiento & desarrollo , Neurohipófisis/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Factor de Transcripción Pit-1/metabolismo , Factores de Transcripción , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
19.
Mol Cell Neurosci ; 35(2): 194-207, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17425960

RESUMEN

Contactin1a (Cntn1a) is a zebrafish homolog of contactin1 (F3/F11/contactin) in mammals, an immunoglobulin superfamily recognition molecule of neurons and oligodendrocytes. We describe conspicuous Cntn1a mRNA expression in oligodendrocytes in the developing optic pathway of zebrafish. In adults, this expression is only retained in glial cells in the intraretinal optic fiber layer, which contains 'loose' myelin. After optic nerve lesion, oligodendrocytes re-express Cntn1a mRNA independently of the presence of regenerating axons and retinal ganglion cells upregulate Cntn1a expression to levels that are significantly higher than those during development. After spinal cord lesion, expression of Cntn1a mRNA is similarly increased in axotomized brainstem neurons and white matter glial cells in the spinal cord. In addition, reduced mRNA expression in the trigeminal/anterior lateral line ganglion in erbb3-deficient mutant larvae implies Cntn1a in Schwann cell differentiation. These complex regulation patterns suggest roles for Cntn1a in myelinating cells and neurons particularly in successful CNS regeneration.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Sistema Nervioso Central/patología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Oligodendroglía/fisiología , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Moléculas de Adhesión Celular Neuronal/genética , Sistema Nervioso Central/fisiopatología , Contactina 1 , Contactinas , Embrión no Mamífero , Enucleación del Ojo/métodos , Hibridación in Situ/métodos , Microscopía Electrónica de Transmisión/métodos , Proteína P0 de la Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Oligodendroglía/ultraestructura , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor ErbB-3/genética , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Pez Cebra , Proteínas de Pez Cebra
20.
J Neurochem ; 101(1): 274-88, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17394468

RESUMEN

The rat ortholog of the WD40 repeat protein Wdr16 is abundantly expressed in testis and cultured ependymal cells. Low levels are found in lung and brain, respectively, while it is absent from kinocilia-free tissues. In testis and ependymal primary cultures, Wdr16 messenger RNA appears concomitantly with the messages for sperm-associated antigen 6, a kinocilia marker, and for hydin, a protein linked to ciliary function and hydrocephalus. In testis, ependyma and respiratory epithelium, the Wdr16 protein is up-regulated together with kinocilia formation. The wdr16 gene is restricted to genera in possession of kinocilia, and it is strongly conserved during evolution. The human and zebrafish proteins are identical in 62% of their aligned amino acids. On the message level, the zebrafish Wdr16 ortholog was found exclusively in kinocilia-bearing tissues by in situ hybridisation. Gene knockdown in zebrafish embryos by antisense morpholino injection resulted in severe hydrocephalus formation with unaltered ependymal morphology or ciliary beat. Wdr16 can be considered a differentiation marker of kinocilia-bearing cells. In the brain, it appears to be functionally related to water homeostasis or osmoregulation.


Asunto(s)
Cilios/metabolismo , Hidrocefalia/genética , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Pez Cebra/genética , Pez Cebra/anomalías , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biomarcadores/análisis , Biomarcadores/metabolismo , Células Cultivadas , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Epéndimo/anomalías , Epéndimo/citología , Epéndimo/metabolismo , Evolución Molecular , Humanos , Hidrocefalia/metabolismo , Hidrocefalia/fisiopatología , Ventrículos Laterales/anomalías , Ventrículos Laterales/metabolismo , Ventrículos Laterales/fisiopatología , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/aislamiento & purificación , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/aislamiento & purificación , Oligonucleótidos Antisentido/farmacología , Filogenia , ARN Mensajero/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Equilibrio Hidroelectrolítico/genética , Equilibrio Hidroelectrolítico/fisiología , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda