Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
J Colloid Interface Sci ; 279(2): 314-25, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15464795

RESUMEN

Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.


Asunto(s)
Carbonatos/química , Galio/química , Óxidos/química , Adsorción , Concentración de Iones de Hidrógeno , Análisis Espectral/métodos , Propiedades de Superficie , Sincrotrones , Rayos X
2.
Geobiology ; 10(2): 130-49, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22039921

RESUMEN

Copper adsorption on the surface and intracellular uptake inside the cells of four representative taxons of soil and aquatic micro-organisms: aerobic rhizospheric heterotrophs (Pseudomonas aureofaciens), anoxygenic (Rhodovulum steppense) and oxygenic (cyanobacteria Gloeocapsa sp. and freshwater diatoms Navicula minima) phototrophs were studied in a wide range of pH, copper concentration, and time of exposure. Chemical status of adsorbed and assimilated Cu was investigated using in situ X-ray absorption spectroscopy. In case of adsorbed copper, XANES spectra demonstrated significant fractions of Cu(I) likely in the form of tri-coordinate complexes with O/N and/or S ligands. Upon short-term reversible adsorption at all four studied micro-organisms' cell surface, Cu(II) is coordinated by 4.0 ± 0.5 planar oxygens at an average distance of 1.97 ± 0.02 Å, which is tentatively assigned to the carboxylate groups. The atomic environment of copper incorporated into diatoms and cyanobacteria during long-term growth is similar to that of the adsorbed metal with slightly shorter distances to the first O/N neighbor (1.95 Å). In contrast to the common view of Cu status in phototrophic micro-organisms, XAFS failed to detect sulfur in the nearest atomic environment of Cu assimilated by freshwater plankton (cyanobacteria) and periphyton (diatoms). The appearance of S in Cu 1st coordination shell at 2.27-2.32 Å was revealed only after long-term interaction of Cu with anoxygenic phototrophs (and Cu uptake by soil heterotrophs), suggesting Cu scavenging in the form of sulfhydryl, histidine/carboxyl or a mixture of carboxylate and sulfhydryl complexes. These new structural constraints suggest that adsorbed Cu(II) is partially reduced to Cu(I) already at the cell surface, where as intracellular Cu uptake and storage occur in the form of both Cu(I)-S linked proteins and Cu(II) carboxylates. Obtained results allow to better understand how, in the course of biological evolution, micro-organisms elaborated various mechanisms of Cu uptake and storage, from passive adsorption and uptake to active, protein-controlled surface reduction, and intracellular storage.


Asunto(s)
Bacterias/crecimiento & desarrollo , Evolución Biológica , Cobre/química , Diatomeas/crecimiento & desarrollo , Procesos Heterotróficos/fisiología , Procesos Fototróficos/fisiología , Adsorción , Aerobiosis , Anaerobiosis , Bacterias/química , Bacterias/metabolismo , Cobre/metabolismo , Cianobacterias/química , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Diatomeas/química , Diatomeas/metabolismo , Oxidación-Reducción , Pseudomonas/química , Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Rhodobacteraceae/química , Rhodobacteraceae/crecimiento & desarrollo , Rhodobacteraceae/metabolismo , Espectroscopía de Absorción de Rayos X
3.
J Colloid Interface Sci ; 350(1): 305-14, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20598702

RESUMEN

Adsorption of copper on exopolysaccharide (EPS)-rich and (EPS)-poor soil rhizospheric Pseudomonas aureofaciens cells was studied as a function of pH and copper concentration at different exposure time in order to assess the effect of cell exopolysaccharides on parameters of adsorption equilibria. The surface properties of bacteria were investigated as a function of pH and ionic strength using potentiometric acid-base titration and electrophoresis that permitted the assessment of the excess surface proton concentration and zeta-potential of the cells, respectively. For adsorption experiments, wide range of Cu concentration was investigated (0.1-375 microM) in order to probe both weak and strong binding sites at the surface. Experimental results were successively fitted using a Linear Programming Model approach. The groups with pK(a) of 4.2-4.8 and from 5.2 to 7.2, tentatively assigned as carboxylates and phosphoryl respectively, are the most abundant at the surface and thus essentially contribute to the metal binding. The presence of exopolysaccharides on the surface decreases the amount of copper adsorbed on the bacterial cell wall apparently via screening the underlining functional groups of the cell wall. At the same time, dissolved EPS substances do not contribute to Cu binding in aqueous solution. Results of this study allow quantification of the role played by the surface EPS matrix as a protective barrier for metal adsorption on bacterial cell walls.


Asunto(s)
Pared Celular/química , Cobre/química , Pseudomonas/química , Adsorción , Concentración de Iones de Hidrógeno , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda