Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 184: 109592, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31499445

RESUMEN

This study aims to characterize the response of durum wheat to different concentrations of Cd found in agricultural soils. One French durum wheat cultivar (i.e. Sculptur) was exposed to low concentrations of Cd (5 nM or 100 nM) in hydroponics. After anthesis, the plants were fed with a solution enriched with the stable isotope 111Cd to trace the newly absorbed Cd. Plants were sampled at anthesis and grain maturity to assess how plant growth, Cd uptake and partitioning among organs, as well as Cd remobilization, differed between the two Cd exposure levels. Durum wheat did not show any visual symptoms of Cd toxicity, regardless of which Cd treatment was applied. However, post-anthesis durum wheat growth was 14% penalized at 100 nM due to the large transpiration-based accumulation of Cd in leaves at this stage. The allocation of Cd to the grains was not restricted but enhanced at 100 nM compared to 5 nM. Both the root-to-shoot Cd translocation and the fraction of aboveground Cd allocated to grains were higher in plants exposed to 100 nM. Cadmium was remobilized exclusively from roots and stems, and remobilized Cd contributed on average to 40-45% of the Cd accumulated in mature grains, regardless of which Cd treatment was applied. The relevance of these results to decreasing the concentration of Cd in durum wheat grains is discussed.


Asunto(s)
Cadmio/metabolismo , Grano Comestible/metabolismo , Hidroponía , Triticum/metabolismo , Contaminantes Químicos del Agua/metabolismo , Transporte Biológico , Grano Comestible/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Triticum/crecimiento & desarrollo
2.
Planta ; 241(4): 847-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25515193

RESUMEN

MAIN CONCLUSION: Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.


Asunto(s)
Cobre/toxicidad , Silicio/farmacología , Triticum/efectos de los fármacos , Biomasa , Hidroponía , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/química , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Plantones/química , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Triticum/química , Triticum/crecimiento & desarrollo
3.
Sci Total Environ ; 780: 146379, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773349

RESUMEN

The role of mangroves in sequestering metal and nutrients in sediment has been described in the past, but knowledge gaps still exist on storage capacity and recycling fluxes of elements in plant biomass, notably concerning their magnitude in root uptake and loss by litterfall. This study addresses the storage and transport pathways of 16 elements, classified as macro-nutrients (Ca, Mg, Na, K), micro-nutrients (Fe, Mn, Ni, Co, Cu, Cr, Zn, Mo), and potential toxicants (Al, Cd, Sn, Pb) in the world's largest mangroves, the Sundarbans. Elemental concentrations in plant organs were generally lower than in the sediment. The stock of macro and micro-nutrients in plant biomass varied from 60 to 2717 and 0.003 to 37.7 Mg ha-1 respectively, with highest values observed for Na and lowest for Cd. The Avicennia species exhibited the maximal accumulation of all elements. Translocation of major elements to different plant organs increased with increasing their concentrations in the sediment. Elemental loss via litterfall indicated that Sundarbans mangrove could act as a source, particularly of Mn, to the Bay of Bengal. Moreover, belowground uptake of the 16 elements showed 2-3 fold higher fluxes than their loss via litterfall. There was a significant retention of some trace elements (notably Mo, Cd, and Sn) in plant biomass, which might allow one to use these mangroves for phytoremediation and restoration purposes. We conclude that mangroves efficiently store and remobilize major and trace elements from the sediments by root uptake and recycle back to sediment surface via litterfall.


Asunto(s)
Avicennia , Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Humedales
4.
Chemosphere ; 250: 126216, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32087384

RESUMEN

Photodegradation of dissolved organic matter (DOM) is highly important in humic waters of peatland regions, yet the coupling between organic and organo-mineral colloids, trace metals and bioavailability of photodegraded products is poorly known. Here we studied photo-destruction of organo-mineral colloids induced by UV-irradiation of sterile-filtered mire water. We revealed two simultaneously occurring processes of transformation of DOM and trace elements speciation: (i) disintegration of high molecular weight organo-mineral colloids into lower molecular weight (<1 kDa) DOM and metal complexes and (ii) formation of particulate (>0.22 µm) aggregates of metals and organic matter. Over 26 days of UV-irradiation, up to 20% of dissolved organic carbon from peat waters was transformed into CO2. In addition to transformation of organic compounds, sizeable change in speciation and size fractionation of many trace metals such as Fe, Pb, Cd, Co, Zn, Cu, V, La, Ni and Cr occurred. Although short-term (1 day) UV-irradiation of mire water stimulated growth of cultivable Pseudomonas sp. bacterium, the long-term exposure (26 days) of organic substrate had a negative effect on bacterial development. Therefore, while sizeable transformation of the organic and metal colloidal load of peat water may occur over first 10 days of UV-irradiation, the enhanced bioavailability of UV-treated substrate is achieved after first day of exposure. The present study demonstrates the importance of even short-term UV-irradiation on colloidal transformation and potential bioavailability of humic waters from temperate mires and highlights the need for more detailed study of coupled metal-organic matter transformation induced by sunlight exposure of mire waters.


Asunto(s)
Coloides/química , Modelos Químicos , Ríos/química , Complejos de Coordinación , Agua Dulce/química , Sustancias Húmicas/análisis , Metales/análisis , Minerales , Peso Molecular , Fotólisis , Suelo , Oligoelementos/análisis , Rayos Ultravioleta
5.
Sci Total Environ ; 749: 141463, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32827830

RESUMEN

Arctic regions contain large amounts of organic carbon (OC) trapped in soil and wetland permafrost. With climate warming, part of this OC is released to aquatic systems and degraded by microorganisms, thus resulting in positive feedback due to carbon (C) emission. In wetland areas, water bodies are spatially heterogenic and separated by landscape position and water residence time. This represents a hydrological continuum, from depressions, smaller water bodies and lakes to the receiving streams and rivers. Yet, the effect of this heterogeneity on the OC release from the soil and its processing in waters is largely unknown and not accounted for in C cycle models of Arctic regions. Here we investigated the dissolved OC (DOC) biodegradation of aquatic systems along a hydrological continuum located in two discontinuous permafrost sites: in western Siberia and northern Sweden. The biodegradable dissolved OC (BDOC15; % DOC lost relative to the initial DOC concentration after 15 days incubation at 20 °C) ranged from 0 to 20% for small water bodies located at the beginning of the continuum (soil solutions, small ponds, fen and lakes) and from 10 to 20% for streams and rivers. While the BDOC15 increased, the removal rate of DOC decreased along the hydrological continuum. The potential maximum CO2 production from DOC biodegradation was estimated to account for only a small part of in-situ CO2 emissions measured in peatland aquatic systems of northern Sweden and western Siberia. This suggests that other sources, such as sediment respiration and soil input, largely contribute to CO2 emissions from small surface waters of permafrost peatlands. Our results highlight the need to account for large heterogeneity of dissolved OC concentration and biodegradability in order to quantify C cycling in arctic water bodies susceptible to permafrost thaw.


Asunto(s)
Hielos Perennes , Regiones Árticas , Carbono/análisis , Siberia , Suecia
6.
Environ Pollut ; 266(Pt 2): 115104, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32650201

RESUMEN

Copper export and mobility in acid mine drainage are difficult to understand with conventional approaches. Within this context, Cu isotopes could be a powerful tool and here we have examined the relative abundance of dissolved (<0.22 µm) Cu isotopes (δ65Cu) in the Meca River which is an outlet of the Tharsis mine, one of the largest abandoned mines of the Iberian Pyrite Belt, Spain. We followed the chemical and isotopic composition of the upstream and downstream points of the catchment during a 24-h diel cycle. Additional δ65Cu values were obtained from the tributary stream, suspended matter (>0.22 µm) and bed sediments samples. Our goals were to 1) assess Cu sources variability at the upstream point under contrasted hydrological conditions and 2) investigate the conservative vs. non conservative Cu behavior along a stream. Average δ65Cu values varied from -0.47 to -0.08‰ (n = 9) upstream and from -0.63 to -0.31‰ downstream (n = 7) demonstrating that Cu isotopes are heterogeneous over the diel cycle and along the Meca River. During dry conditions, at the upstream point of the Meca River the Cu isotopic composition was heavier which is in agreement with the preferential release of heavy isotopes during the oxidative dissolution of primary sulfides. The more negative values obtained during high water flow are explained by the contribution of soil and waste deposit weathering. Finally, a comparison of upstream vs. downstream Cu isotope composition is consistent with a conservative behavior of Cu, and isotope mass balance calculations estimate that 87% of dissolved Cu detected downstream originate from the Tharsis mine outlet. These interpretations were supported by thermodynamic modelling and sediment characterization data (X-ray diffraction, Raman Spectroscopy). Overall, based on contrasted hydrological conditions (dry vs flooded), and taking the advantage of isotope insensitivity to dilution, the present work demonstrates the efficiency of using the Cu isotopes approach for tracing sources and processes in the AMD regions.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Isótopos/análisis , Minería , Ríos , España
7.
Sci Total Environ ; 737: 139671, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32521361

RESUMEN

Despite the importance of surface waters of permafrost landscapes in carbon (C) emission and dissolved C and metal storage and export, the majority of available observations in high latitude aquatic systems deal with punctual or seasonal sampling without accounting for diurnal variations in temperature and primary productivity-respiration cycles. Towards providing comprehensive understanding of diel variations in CO2 emission, organic C and element concentrations in lakes of frozen peatlands, we monitored, each 2 h over 2 days, the water temperature, pH, CO2 fluxes, CO2, CH4, dissolved organic and inorganic carbon (DOC and DIC, respectively), nutrients, carboxylic acids, bacterial number, and major and trace elements in two acidic (pH = 3.6 and 4.0) and humic (DOC = 15 and 35 mg L-1) thermokarst lakes of discontinuous permafrost zone in Western Siberia. We discovered a factor of 2 to 3 higher CO2 concentrations and fluxes during the night compared to daytime in the high-DOC lake. The emission fluxes in the low-DOC lake increased from zero to negative values during the day to highly positive values during the end of night and early morning. The methane concentration varied within a factor of 5 without any link to the diurnal cycle. The bulk of dissolved (< 0.45 µm) hydrochemical parameters remained highly stable with ±10% variation in concentration over 2 days of observation (DOC, DIC, SUVA254nm, carboxylates (formate, oxalate, puryvate and glutarate), Mn, Fe, Al, other trace elements). Concentrations of Si, P, K, Cu varied within ±20% whereas those of Zn and Ni ranged by a factor of 2 to 4 without any link to diurnal pattern. Overall, the impact of diel cycle on CH4, DOC, nutrient and metal concentration was below 10%. However, neglecting night-time period may underestimate net CO2 emission by ca. 30 to 50% in small organic-rich thaw ponds and switch the CO2 exchange from uptake/zero to net emission in larger thermokarst lakes. Given the dominance of large lakes in permafrost regions, the global underestimation of the emission flux may be quite high. As such, monitoring CO2 concentrations and fluxes in thermokarst lakes during months of extended night time (August to October) is mandatory for assessing the net emissions from lentic waters of frozen peatlands.

8.
Nat Commun ; 10(1): 1552, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948722

RESUMEN

The Western Siberia Lowland (WSL), the world's largest permafrost peatland, is of importance for understanding the high-latitude carbon (C) cycle and its response to climate change. Warming temperatures increase permafrost thaw and production of greenhouse gases. Also, permafrost thaw leads to the formation of lakes which are hotspots for atmospheric C emissions. Although lakes occupy ~6% of WSL, lake C emissions from WSL remain poorly quantified. Here we show high C emissions from lakes across all permafrost zones of WSL. The C emissions were especially high in shoulder seasons and in colder permafrost-rich regions. The total C emission from permafrost-affected lakes of WSL equals ~12 ± 2.6 Tg C yr-1 and is 2-times greater than region's C export to the Arctic coast. The results show that C emission from WSL lakes is a significant component in the high-latitude C cycle, but also suggest that C emission may decrease with warming.

9.
Sci Total Environ ; 634: 1004-1023, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660859

RESUMEN

Soil pore waters are a vital component of the ecosystem as they are efficient tracers of mineral weathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of the world. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1°C mean annual temperature, 360 to 600mm annual precipitation), active layer thickness (ALT) (>300 to 40cm), and permafrost coverage (sporadic, discontinuous and continuous). We analyzed CO2, CH4, dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting the WSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the supra-permafrost water with increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3°N to 67.4°N. However, a number of solutes (DOC, CO2, alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO2, DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease.

10.
J Colloid Interface Sci ; 296(1): 189-94, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16225886

RESUMEN

To probe the surface speciation of quartz in strong acidic solutions (pH 0-3), where surface titration and electrophoresis are extremely difficult to perform, dissolution rates of this mineral were measured at 25 degrees C and constant ionic strength (1.0 M) using mixed-flow and batch reactors. Dissolution rates increase with activity of protons at 0 < or = pH < or = 3, which suggests the adsorption of H+ on the mineral surface, leading to polarization of SiO bonds and detachment of the silicon atom from the structure. This scheme is consistent with the presence of a non-negligible amount (i.e., up to 30-50% at pH close to 0) of protonated >SiOH2+ species on the surface, as was recently demonstrated using X-ray photoelectron spectroscopy (XPS) analysis of exactly the same quartz sample [Y. Duval, J. Mielczarski, O.S. Pokrovsky, E. Mielczarski, J.J. Ehrhardt, J. Phys. Chem. B 106 (2002) 2937-2945]. A 2-pK electrical double layer (EDL) constant capacitance surface speciation model has been used to model the obtained kinetic data. A set of surface stability constants consistent with previous spectroscopic XPS measurements (pK1 = -1.0 and pK2 = 4.0) and EDL capacitance of 1.5 F/m2 provide adequate description of the dissolution rate with reaction order with respect to [>SiOH2(+)] close to 1. Although the CCM model used in this study presents some limitations on surface charge versus pH dependences, the developed kinetic approach opens new possibilities of probing the surface speciation at the SiO2-aqueous solution interface under extreme solution conditions.

11.
Environ Sci Pollut Res Int ; 23(2): 1414-27, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26370813

RESUMEN

We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 µM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 µM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.


Asunto(s)
Cadmio/metabolismo , Silicio/metabolismo , Triticum/crecimiento & desarrollo , Hidroponía , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Triticum/metabolismo
12.
Environ Sci Pollut Res Int ; 23(21): 22136-22150, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27543131

RESUMEN

Although the industrial use of nanoparticles has increased over the past decade, the knowledge about their interaction with benthic phototrophic microorganisms in the environment is still limited. This study aims to characterize the toxic effect of ionic Ag+ and Ag nanoparticles (citrate-coated silver nanoparticles, AgNPs) in a wide concentration range (from 1 to 1000 µg L-1) and duration of exposure (2, 5 and 14 days) on three biofilm-forming benthic microorganisms: diatom Nitzschia palea, green algae Uronema confervicolum and cyanobacteria Leptolyngbya sp. Ag+ has a significant effect on the growth of all three species at low concentrations (1-10 µg L-1), whereas the inhibitory effect of AgNPs was only observed at 1000 µg L-1 and solely after 2 days of exposure. The inhibitory effect of both Ag+ and AgNPs decreased in the course of the experiments from 2 to 14 days, which can be explained by the progressive excretion of the exopolysaccharides and dissolved organic carbon by the microorganisms, thus allowing them to alleviate the toxic effects of aqueous silver. The lower impact of AgNPs on cells compared to Ag+ can be explained in terms of availability, internalization, reactive oxygen species production, dissolved silver concentration and agglomeration of AgNPs. The duration of exposure to Ag+ and AgNPs stress is a fundamental parameter controlling the bioaccumulation and detoxification in benthic phototrophic microorganisms.


Asunto(s)
Biopelículas/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Cianobacterias/efectos de los fármacos , Diatomeas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Biopelículas/crecimiento & desarrollo , Chlorophyta/fisiología , Cianobacterias/fisiología , Diatomeas/fisiología , Factores de Tiempo
13.
J Colloid Interface Sci ; 291(1): 192-200, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15963523

RESUMEN

Adsorption of Zn on goethite, hematite, birnessite, pyrolusite, corundum, and gibbsite was studied using a batch adsorption technique as a function of pH, zinc concentration in solution, and time of exposure. Adsorption from 0.01 M NaNO3 solutions undersaturated with respect to zinc (hydr)oxide at 3MeOZn+ complexes, where Me=Fe, Mn, and Al, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Zn concentration. The logarithms of surface stability constant for Zn interaction with metal oxy(hydr)oxides (>MeOH0+Zn2+-->MeOZn+) vary from -2.5 to 0.5. They are higher for oxy(hydr)oxides than for anhydrous oxides. Stable isotopes of zinc in several filtrates were measured using an ICP-MS Neptune multicollector which made it possible, for the first time, to assess the degree of isotopic fractionation between 66Zn and 64Zn during zinc adsorption on mineral surfaces. The isotopic offset between aqueous solution and mineral surfaces (Delta(66/64)Zn(soln/solid)=delta((66/64)Zn)(solution)-delta((66/64)Zn)(surface)) was found to be weakly dependent on percentage of adsorbed metal and equals 0.20+/-0.03, 0.17+/-0.06, -0.10+/-0.03, -0.10+/-0.09, and -0.13+/-0.12 per thousand for goethite, birnessite, pyrolusite, corundum, and Al(OH)3. For hematite, Delta(66/64)Zn varies from -0.61+/-0.10 per thousand at pH 5.5 to -0.02+/-0.09 per thousand at 5.8MeOZn(H2O)(n) complexes (available literature data on X-ray absorption spectroscopy). Apparently, the fine structure of surface complexes and the position and bond strength for second neighbors of zinc are likely to control its isotopic fractionation during adsorption on mineral surfaces. Our results strongly suggest that inorganic processes controlling zinc isotope adsorption on soil and sediment minerals should be of second-order importance compared to biological factors.

14.
J Colloid Interface Sci ; 279(2): 314-25, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15464795

RESUMEN

Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.


Asunto(s)
Carbonatos/química , Galio/química , Óxidos/química , Adsorción , Concentración de Iones de Hidrógeno , Análisis Espectral/métodos , Propiedades de Superficie , Sincrotrones , Rayos X
15.
J Colloid Interface Sci ; 415: 169-78, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24267345

RESUMEN

This study quantifies the adsorption of heavy metals on 4 typical moss species used for environmental monitoring in the moss bag technique. The adsorption of Cu(2+), Cd(2+), Ni(2+), Pb(2+) and Zn(2+) onto Hypnum sp., Sphagnum sp., Pseudoscleropodium purum and Brachytecium rutabulum has been investigated using a batch reactor in a wide range of pH (1.3-11.0) and metal concentrations in solution (1.6µM-3.8mM). A Linear Programming Model (LPM) was applied for the experimental data to derive equilibrium constants and the number of surface binding sites. The surface acid-base titration performed for 4 mosses at a pH range of 3-10 in 0.1M NaNO3 demonstrated that Sphagnum sp. is the most efficient adsorbent as it has the maximal number of proton-binding sites on the surface (0.65mmol g(-1)). The pKa computed for all the moss species suggested the presence of 5 major functional groups: phosphodiester, carboxyl, phosphoryl, amine and polyphenols. The results of pH-edge experiments demonstrated that B. rutabulum exhibits the highest percentage of metal adsorption and has the highest number of available sites for most of the metals studied. However, according to the results of the constant pH "Langmuirian" isotherm, Sphagnum sp. can be considered as the strongest adsorbent, although the relative difference from other mosses is within 20%. The LPM was found to satisfactorily fit the experimental data in the full range of the studied solution parameters. The results of this study demonstrate a rather similar pattern of five metal adsorptions on mosses, both as a function of pH and as a metal concentration, which is further corroborated by similar values of adsorption constants. Therefore, despite the species and geographic differences between the mosses, a universal adsorption edge and constant pH adsorption isotherm can be recommended for 4 studied mosses. The quantitative comparison of metal adsorption with other common natural organic and inorganic materials demonstrates that mosses are among the most efficient natural adsorbents of heavy metals.


Asunto(s)
Briófitas/química , Monitoreo del Ambiente/métodos , Metales Pesados/química , Adsorción , Sitios de Unión , Briófitas/fisiología , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Estadísticos , Protones , Especificidad de la Especie , Termodinámica , Volumetría
16.
J Colloid Interface Sci ; 435: 59-66, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25218048

RESUMEN

The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (p<0.05). As such, EPS-rich bacteria are capable of efficiently shielding the soil particles from heavy-metal adsorption. The removal efficiency of heavy metals in an abiotic organic-rich soil system should therefore be significantly higher than that in the presence of bacteria. This effect can be explained by the shielding of strongly bound metal sites on the organic-rich soil particles by inert bacterial exopolysaccharides.

17.
Water Res ; 47(2): 922-32, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23219386

RESUMEN

This work describes variation of element concentration in surface water of a subarctic organic-rich lake during the diurnal cycle of photosynthesis. An unusually hot summer 2010 in European part of subarctic Russia produced elevated surface water temperature (28-30 °C) and caused massive cyanobacterial bloom. Diurnal variation of ~40 dissolved macro and trace elements and organic carbon were recorded in the humic Lake Svyatoe in the White Sea drainage basin. Two days continuous measurements with 3 h sampling steps at the surface (0.5 m) allowed tracing cyanobacterial activity via pH and O2 measurement and revealed constant concentrations (within ±20-30%) of all major elements (Na, Mg, Cl, SO4, K, Ca), organic and inorganic carbon and most trace elements (Li, B, Sc, Ti, Ni, Cu, Ga, As, Rb, Sr, Y, Zr, Mo, Sb, medium and heavy REEs, Hf, Pb, Th, U). The concentration of Mn demonstrated a factor of 3 decrease during the day following Mn adsorption onto cyanobacterial cells due to ~1 pH unit raise during the photosynthesis and Mn release during the night due to desorption from the cell surface. The role of Mn(II) photo-oxidation by reactive oxygen species could be also pronounced, although its contribution to Mn diurnal variation was much smaller than the adsorption at the cell surfaces. Similar pattern, but with much lesser variations (c.a., 10-20%), was recorded for Ba and Fe. On-site ultrafiltration technique allowed to distinguish between low molecular weight (LMW) complexes (<1 kDa) and high molecular weight (HMW) colloids (1 kDa-0.22 µm) and to assess their diurnal pattern. Colloidal Al and Fe were the highest during the night, when the contribution of HMW allochthonous colloids was maximal. Typical insoluble trivalent and tetravalent elements exhibited constant complexation (>80-90%) with HMW allochthonous organics, independent on the diel photosynthetic cycle. Finally, biologically-relevant metals (Cu, Co, Cr, V, and Ni) demonstrated significant variations of colloidal fractions (from 10 to 60%) not directly related to the photosynthesis. The majority of possible metal nutrients, being strongly associated with organic and organo-mineral colloids do not exhibit any measurable concentration variation during photosynthesis. The two types of element behavior during cyanobacterial bloom in the water column--constant concentration and sinusoidal variations--likely depend on element speciation in solution and their relative affinity to surfaces of aquatic microorganisms and complexation with authochthonous and allochthonous organic matter.


Asunto(s)
Ritmo Circadiano , Cianobacterias/crecimiento & desarrollo , Eutrofización , Sustancias Húmicas/análisis , Lagos/química , Metales/análisis , Fitoplancton/crecimiento & desarrollo , Adsorción , Disponibilidad Biológica , Coloides , Cianobacterias/metabolismo , Concentración de Iones de Hidrógeno , Hierro/análisis , Hierro/química , Hierro/metabolismo , Lagos/microbiología , Manganeso/análisis , Manganeso/química , Manganeso/metabolismo , Metales/química , Metales/metabolismo , Peso Molecular , Oxígeno/análisis , Fotosíntesis , Fitoplancton/metabolismo , Federación de Rusia , Solubilidad , Propiedades de Superficie , Árboles , Recursos Hídricos
18.
Sci Total Environ ; 463-464: 78-90, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792250

RESUMEN

The colloidal distribution and size fractionation of organic carbon (OC), major elements and trace elements (TE) were studied in a seasonally stratified, organic-rich boreal lake, Lake Svyatoe, located in the European subarctic zone (NW Russia, Arkhangelsk region). This study took place over the course of 4 years in both winter and summer periods using an in situ dialysis technique (1 kDa, 10 kDa and 50 kDa) and traditional frontal filtration and ultrafiltration (5, 0.22 and 0.025 µm). We observed a systematic difference in dissolved elements and colloidal fractions between summer and winter periods with the highest proportion of organic and organo-ferric colloids (1 kDa-0.22 µm) observed during winter periods. The anomalously hot summer of 2010 in European Russia produced surface water temperatures of approximately 30°C, which were 10° above the usual summer temperatures and brought about crucial changes in element speciation and size fractionation. In August 2010, the concentration of dissolved organic carbon (DOC) decreased by more than 30% compared to normal period, while the relative proportion of organic colloids decreased from 70-80% to only 20-30% over the full depth of the water column. Similarly, the proportion of colloidal Fe decreased from 90-98% in most summers and winters to approximately 60-70% in August 2010. During this hot summer, measurable and significant (>30% compared to other periods) decreases in the colloidal fractions of Ca, Mg, Sr, Ba, Al, Ti, Ni, As, V, Co, Y, all rare earth elements (REEs), Zr, Hf, Th and U were also observed. In addition, dissolved (<0.22 µm) TE concentrations decreased by a factor of 2 to 6 compared to previously investigated periods. The three processes most likely responsible for such a crucial change in element biogeochemistry with elevated water temperature are 1) massive phytoplankton bloom, 2) enhanced mineralization (respiration) of allochthonous dissolved organic matter by heterotrophic aerobic bacterioplankton and 3) photo-degradation of DOM and photo-chemical liberation of organic-bound TE. While the first process may have caused significant decreases in the total dissolved concentration of micronutrients (a factor of 2 to 5 for Cr, Mn, Fe, Ni, Cu, Zn and Cd and a factor of >100 for Co), the second and third factors could have brought about the decrease of allochthonous DOC concentration as well as the concentration and proportion of organic and organo-mineral colloidal forms of non-essential low-soluble trace elements present in the form of organic colloids (Al, Y, Ti, Zr, Hf, Th, Pb, all REEs). It can be hypothesized that climate warming in high latitudes capable of significantly raising surface water temperatures will produce a decrease in the colloidal fraction of most trace elements and, as a result, an increase in the most labile low molecular weight LMW(<1 kDa) fraction.


Asunto(s)
Carbono/análisis , Calor , Lagos/química , Oligoelementos/análisis , Regiones Árticas , Arsénico/análisis , Coloides/análisis , Cobre/análisis , Sustancias Húmicas/análisis , Manganeso/análisis , Níquel/análisis , Oxidación-Reducción , Estaciones del Año , Siberia
19.
J Hazard Mater ; 199-200: 358-66, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22142892

RESUMEN

The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25°C as a function of the pH (3.5-8) and a large range of metal concentrations in solution (10(-9)-10(-4) mol l(-1)). We studied the adsorption kinetics using a Cd(2+)-selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 ± 0.5 µmol/g Cd and 20 ± 2 µmol/g Pb). A constant slope of adsorbed-dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil protection since metal toxicity depends on metal availability.


Asunto(s)
Ácidos/química , Cadmio/química , Plomo/química , Suelo/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética
20.
Geobiology ; 10(2): 130-49, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22039921

RESUMEN

Copper adsorption on the surface and intracellular uptake inside the cells of four representative taxons of soil and aquatic micro-organisms: aerobic rhizospheric heterotrophs (Pseudomonas aureofaciens), anoxygenic (Rhodovulum steppense) and oxygenic (cyanobacteria Gloeocapsa sp. and freshwater diatoms Navicula minima) phototrophs were studied in a wide range of pH, copper concentration, and time of exposure. Chemical status of adsorbed and assimilated Cu was investigated using in situ X-ray absorption spectroscopy. In case of adsorbed copper, XANES spectra demonstrated significant fractions of Cu(I) likely in the form of tri-coordinate complexes with O/N and/or S ligands. Upon short-term reversible adsorption at all four studied micro-organisms' cell surface, Cu(II) is coordinated by 4.0 ± 0.5 planar oxygens at an average distance of 1.97 ± 0.02 Å, which is tentatively assigned to the carboxylate groups. The atomic environment of copper incorporated into diatoms and cyanobacteria during long-term growth is similar to that of the adsorbed metal with slightly shorter distances to the first O/N neighbor (1.95 Å). In contrast to the common view of Cu status in phototrophic micro-organisms, XAFS failed to detect sulfur in the nearest atomic environment of Cu assimilated by freshwater plankton (cyanobacteria) and periphyton (diatoms). The appearance of S in Cu 1st coordination shell at 2.27-2.32 Å was revealed only after long-term interaction of Cu with anoxygenic phototrophs (and Cu uptake by soil heterotrophs), suggesting Cu scavenging in the form of sulfhydryl, histidine/carboxyl or a mixture of carboxylate and sulfhydryl complexes. These new structural constraints suggest that adsorbed Cu(II) is partially reduced to Cu(I) already at the cell surface, where as intracellular Cu uptake and storage occur in the form of both Cu(I)-S linked proteins and Cu(II) carboxylates. Obtained results allow to better understand how, in the course of biological evolution, micro-organisms elaborated various mechanisms of Cu uptake and storage, from passive adsorption and uptake to active, protein-controlled surface reduction, and intracellular storage.


Asunto(s)
Bacterias/crecimiento & desarrollo , Evolución Biológica , Cobre/química , Diatomeas/crecimiento & desarrollo , Procesos Heterotróficos/fisiología , Procesos Fototróficos/fisiología , Adsorción , Aerobiosis , Anaerobiosis , Bacterias/química , Bacterias/metabolismo , Cobre/metabolismo , Cianobacterias/química , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Diatomeas/química , Diatomeas/metabolismo , Oxidación-Reducción , Pseudomonas/química , Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Rhodobacteraceae/química , Rhodobacteraceae/crecimiento & desarrollo , Rhodobacteraceae/metabolismo , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda