Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Commun ; 14(1): 6180, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794012

RESUMEN

Groundwater overdraft gives rise to multiple adverse impacts including land subsidence and permanent groundwater storage loss. Existing methods are unable to characterize groundwater storage loss at the global scale with sufficient resolution to be relevant for local studies. Here we explore the interrelation between groundwater stress, aquifer depletion, and land subsidence using remote sensing and model-based datasets with a machine learning approach. The developed model predicts global land subsidence magnitude at high spatial resolution (~2 km), provides a first-order estimate of aquifer storage loss due to consolidation of ~17 km3/year globally, and quantifies key drivers of subsidence. Roughly 73% of the mapped subsidence occurs over cropland and urban areas, highlighting the need for sustainable groundwater management practices over these areas. The results of this study aid in assessing the spatial extents of subsidence in known subsiding areas, and in locating unknown groundwater stressed regions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda