RESUMEN
The 1:1 resveratrol-piperazine cocrystal was successfully synthesized and scaled-up to 300 g scale with the mechanochemical method, as a result of investigating key process parameters, namely the solvent and the grinding time. The use of water, ethanol or ethanol-water mixtures and reaction times up to 50 min were evaluated relative to the dry grinding process. Cocrystal formation and purity were monitored through X-ray diffraction and calorimetry measurements. The dry grinding resulted in an incomplete cocrystal formation, while the use of water or water-ethanol mixture yielded a monohydrate solid phase. Pure ethanol was found to be the optimal solvent for large-scale cocrystallization, as it delivered cocrystals with high crystallinity and purity after 10-30 min grinding time at the laboratory scale. Notably, a relatively fast reaction time (30-60 min) was sufficient for the completion of cocrystallization at larger scales, using a planetary ball mill and a plant reactor. Also, the obtained cocrystal increases the aqueous solubility of resveratrol by 6%-16% at pH = 6.8. Overall, this study highlights the potential of solvent-assisted mechanochemical synthesis as a promising new approach for the efficient production of pure resveratrol-piperazine cocrystals.
RESUMEN
A collection of compounds, structurally related to the anticancer drug tamoxifen, used in breast cancer therapy, were designed and synthesized as potential anticancer agents. McMurry coupling reaction was used as the key synthetic step in the preparation of these analogues and the structural assignment of E, Z isomers was determined on the basis of 2D-NOESY experiments. The compounds were evaluated for their antiproliferative activity on breast cancer (MCF-7), cervix adenocarcinoma (HeLa) and biphasic mesothelioma (MSTO-211H) human tumor cell lines. The estrogen like properties of the novel compounds were compared with those of the untreated controls using an estrogen responsive element-based (ERE) luciferase reporter assay and compared to 17ß-estradiol (E2). Finally, with the aim to correlate the antiproliferative activity with an intracellular target(s), the effect on relaxation activity of DNA topoisomerases I and II was assayed.
Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Tamoxifeno/síntesis química , Tamoxifeno/farmacología , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Endometriales/tratamiento farmacológico , Femenino , Humanos , Estructura Molecular , Receptores de Estrógenos/metabolismo , Tamoxifeno/químicaRESUMEN
Enterolactone (EL) is an enterolignan produced by gut microbiota from dietary plant lignans. Epidemiological and experimental studies suggest that EL and plant lignans may reduce the risk of breast and prostate cancer as well as cardiovascular disease. These effects are thought to at least in part involve modulation of estrogen receptor activity. Surprisingly little is known about the in vivo estrogenicity of EL. In the present study, we investigated the target tissues of EL, the genes affected by EL treatment, and the response kinetics. Following a single dose of EL, luciferase was significantly induced in reproductive and nonreproductive tissues of male and female 3xERE-luciferase mice, indicating estrogen-like activity. Microarray analysis revealed that EL regulated the expression of only 1% of 17ß-estradiol target genes in the uterus. The majority of these genes were traditional estrogen target genes, but also members of the circadian signaling pathway were affected. Kinetic analyses showed that EL undergoes rapid phase II metabolism and is efficiently excreted. In vivo imaging demonstrated that the estrogen response followed similar, fast kinetics. We conclude that EL activates estrogen signaling in both male and female mice and that the transient responses may be due to the fast metabolism of the compound. Lastly, EL may represent a link among diet, gut microbiota, and circadian signaling.
Asunto(s)
4-Butirolactona/análogos & derivados , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Estrógenos/metabolismo , Lignanos/farmacología , Fitoestrógenos/farmacología , Transducción de Señal/efectos de los fármacos , 4-Butirolactona/sangre , 4-Butirolactona/farmacología , Animales , Proteínas CLOCK/genética , Relojes Circadianos/efectos de los fármacos , Estradiol/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Lignanos/sangre , Hígado/metabolismo , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Orquiectomía , Ovariectomía , Análisis por Matrices de Proteínas , Distribución Aleatoria , Útero/metabolismoRESUMEN
Together with the estrogen receptor (ER) alpha, estrogen receptor beta (ER beta ) mediates many of the physiological effects of estrogens. As ER beta is crucially involved in a variety of important physiological processes, its activity should be tightly regulated. ER beta regulation is achieved by hormone binding as well as by posttranslational modifications of the receptor. Furthermore, ER beta expression levels are under circadian control and can be regulated by DNA methylation of the ER beta promoter region. There are also a number of factors that can interfere with ER beta activity, such as phytoestrogens, endocrine disruptive chemicals, and growth factors. In this article, we outline different mechanisms of ER beta regulation and how they are implicated in various diseases. We also discuss how these insights might help to specifically target ER beta in drug design.
Asunto(s)
Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Neoplasias/patología , Empalme Alternativo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Fitoestrógenos/metabolismo , Unión Proteica , Procesamiento Proteico-PostraduccionalRESUMEN
Many toxic compounds exert their harmful effects by activating of certain receptors, which in turn leads to dysregulation of transcription. Some of these receptors are so called xenosensors. They are activated by external chemicals and evoke a cascade of events that lead to the elimination of the chemical from the system. Other receptors that are modulated by toxic substances are hormone receptors, particularly the ones of the nuclear receptor family. Some environmental chemicals resemble endogenous hormones and can falsely activate these receptors, leading to undesired activity in the cell. Furthermore, excessive activation of the xenosensors can lead to disturbances of the integrity of the system as well. In this chapter, the concepts of receptor-mediated toxicity and hormone disruption are introduced. We start by describing environmental chemicals that can bind to xenosensors and nuclear hormone receptors. We then describe the receptors most commonly targeted by environmental chemicals. Finally, the mechanisms by which receptor-mediated events can disrupt the system are depicted.
Asunto(s)
Disruptores Endocrinos/toxicidad , Sistema Endocrino/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Sistema Endocrino/metabolismo , Sistema Endocrino/fisiología , Humanos , Modelos Biológicos , Receptores Citoplasmáticos y Nucleares/fisiología , Transducción de Señal/efectos de los fármacos , Xenobióticos/toxicidadRESUMEN
The biological effects of dioxins are mediated by the aryl hydrocarbon receptor (AhR) and its dimerization partner, the AhR nuclear translocator (ARNT), and include interference with hormonal signaling pathways like the response to estrogens. The effects of estrogens are mediated by two estrogen receptor (ER) isoforms, ERalpha and ERbeta, which belong to the family of nuclear receptors. We have previously shown that ARNT can act as coactivator of the ERs. In this study, we show that recruitment of ARNT to AhR or hypoxia-inducible factor-1alpha signaling pathways as well as small interfering RNA-mediated down-regulation of ARNT levels lead to a reduction in ER transcriptional activity. Using chromatin immunoprecipitation assays, we demonstrate that this decrease coincides with reduced recruitment of ARNT to estradiol-regulated promoters. We show further that coactivation by ARNT as well as inhibition by dioxin acts stronger on ERbeta than on ERalpha activity. Additionally, we demonstrate that the effects of ARNT are dependent on the A/B domain of the ERs with the A/B domain of ERbeta being considerably stronger in mediating the coactivating effects of ARNT. Taken together, our studies show that recruitment of ARNT to the AhR after dioxin treatment can account for the antiestrogenic effect of dioxins. Moreover, we show for the first time that the inhibitory effects of dioxin are more pronounced on ERbeta than on ERalpha.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Dioxinas/farmacología , Receptor beta de Estrógeno/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Hipoxia de la Célula , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Dimerización , Estradiol/farmacología , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/química , Receptor beta de Estrógeno/genética , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Modelos Biológicos , Mutación , Dibenzodioxinas Policloradas/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacosRESUMEN
The biological effects of 17beta-estradiol (E(2)) are mediated by the two estrogen receptor (ER) isoforms ERalpha and ERbeta. These receptors are ligand-inducible transcription factors that belong to the nuclear receptor superfamily. These receptors are also targets for a broad range of natural and synthetic compounds that induce ER activity, including dietary compounds, pharmaceuticals, and various types of environmental pollutants such as bisphenols and polychlorinated hydroxy-biphenyls. Here, we study the effect of the combustion byproduct 3-methylcholanthrene (3-MC) on ERalpha and ERbeta. 3-MC is a compound identified previously as an activator of the aryl hydrocarbon receptor (AhR). Activation of AhR is traditionally associated with an inhibition of the E(2) signaling network. In this study, we demonstrate that 3-MC is a cell-specific activator or inhibitor of E(2) signaling pathways. We show that 3-MC acts as a repressor in some cells, presumably via the AhR, whereas it is a potent activator of ER activity in other cells. It is interesting that we demonstrate that the estrogenic effects of 3-MC are dependent on the ability of cells to metabolize parental 3-MC to alternative compounds. In summary, our results suggest that exposure to AhR ligands like 3-MC can lead to either activation or repression of E(2) signaling, depending on the cellular context.
Asunto(s)
Membrana Celular/metabolismo , Receptor alfa de Estrógeno/biosíntesis , Receptor beta de Estrógeno/biosíntesis , Metilcolantreno/farmacología , Transducción de Señal/fisiología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Estradiol/metabolismo , Estradiol/fisiología , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Humanos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiologíaRESUMEN
BACKGROUND: The origin of nuclear receptors (NRs) and the question whether the ancestral NR was a liganded or an unliganded transcription factor has been recently debated. To obtain insight into the evolution of the ligand binding ability of estrogen receptors (ER), we comparatively characterized the ER from the protochordate amphioxus (Branchiostoma floridae), and the ER from lamprey (Petromyzon marinus), a basal vertebrate. RESULTS: Extensive phylogenetic studies as well as signature analysis allowed us to confirm that the amphioxus ER (amphiER) and the lamprey ER (lampER) belong to the ER group. LampER behaves as a "classical" vertebrate ER, as it binds to specific DNA Estrogen Responsive Elements (EREs), and is activated by estradiol (E2), the classical ER natural ligand. In contrast, we found that although amphiER binds EREs, it is unable to bind E2 and to activate transcription in response to E2. Among the 7 natural and synthetic ER ligands tested as well as a large repertoire of 14 cholesterol derivatives, only Bisphenol A (an endocrine disruptor with estrogenic activity) bound to amphiER, suggesting that a ligand binding pocket exists within the receptor. Parsimony analysis considering all available ER sequences suggest that the ancestral ER was not able to bind E2 and that this ability evolved specifically in the vertebrate lineage. This result does not support a previous analysis based on ancestral sequence reconstruction that proposed the ancestral steroid receptor to bind estradiol. We show that biased taxonomic sampling can alter the calculation of ancestral sequence and that the previous result might stem from a high proportion of vertebrate ERs in the dataset used to compute the ancestral sequence. CONCLUSION: Taken together, our results highlight the importance of comparative experimental approaches vs ancestral reconstructions for the evolutionary study of endocrine systems: comparative analysis of extant ERs suggests that the ancestral ER did not bind estradiol and that it gained the ability to be regulated by estradiol specifically in the vertebrate lineage, before lamprey split.
Asunto(s)
Cordados no Vertebrados/genética , Estradiol/metabolismo , Evolución Molecular , Petromyzon/genética , Receptores de Estrógenos/genética , Secuencia de Aminoácidos , Animales , Compuestos de Bencidrilo , Línea Celular , Cordados no Vertebrados/metabolismo , Clonación Molecular , Genes Reporteros , Humanos , Datos de Secuencia Molecular , Petromyzon/metabolismo , Fenoles/metabolismo , Filogenia , Elementos de Respuesta , Alineación de Secuencia , Activación TranscripcionalRESUMEN
Numerous dietary compounds can modify gene expression by binding to the members of the nuclear receptor superfamily of transcription factors. For example, dietary polyphenols, such as soy isoflavones genistein and daidzein, modulate the activity of the estrogen receptors (ERs)-alpha and ERbeta. An additional class of dietary polyphenols that modulate cellular signaling pathways are lignans, compounds that are common constituents of Western diets. In this study, we show that a metabolite of dietary lignans, enterolactone, at physiological concentrations, activates ER-mediated transcription in vitro with preference for ERalpha. The effects of enterolactone are mediated by the ER ligand binding domain and are susceptible to antiestrogen treatment. Furthermore, the affinity of enterolactone toward ERalpha, measured by a novel ligand binding assay, is augmented in cell culture conditions. Moreover, our results demonstrate for the first time that enterolactone has estrogenic activity in vivo. In transgenic estrogen-sensitive reporter mice, enterolactone induces tissue-specific estrogen-responsive reporter gene expression as well as promotes uterine stromal edema and expression of estrogen-responsive endogenous genes (CyclinD1 and Ki67). Taken together, our data show that enterolactone is a selective ER agonist inducing ER-mediated transcription both in vitro in different cell lines and in vivo in the mouse uterus.
Asunto(s)
4-Butirolactona/análogos & derivados , Dieta , Lignanos/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , 4-Butirolactona/biosíntesis , 4-Butirolactona/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Núcleo Celular/metabolismo , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Ligandos , Lignanos/biosíntesis , Lignanos/farmacología , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína/fisiología , Receptores de Estrógenos/agonistas , Distribución Tisular , Activación Transcripcional/efectos de los fármacosRESUMEN
The function of the aryl hydrocarbon receptor (AhR) in mediating the biological effect to environmental pollutants is well established. However, accumulated evidence indicates a wide range of physiological and pathological functions mediated by the AhR, suggesting the existence of endogenous AhR ligand(s). The nature of an AhR ligand remain elusive; however, it is known that the AhR is activated by several compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin or the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. In this study, we show that physiological concentrations of tryptamine (TA) lead to induction of cytochrome P4501A1 transcription through an AhR-dependent mechanism. In addition, we show that activation of the AhR by TA requires a functional monoamino oxidase system, suggesting that TA acts as an AhR proligand possibly by converting to a high-affinity AhR ligand. Taken together, we show a possible mechanism, through which AhR signaling is activated by endogenous conversion of TA involving monoamine oxidases.
Asunto(s)
Monoaminooxidasa/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Triptaminas/farmacología , Células 3T3-L1 , Animales , Carbazoles/farmacología , Inmunoprecipitación de Cromatina , Citocromo P-450 CYP1A1/genética , Células HT29 , Humanos , Ratones , Monoaminooxidasa/genética , Unión Proteica , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genéticaRESUMEN
The two estrogen receptor isoforms ERα and ERß mediate biological effects of estrogens, but are also targets for endocrine disruptive chemicals (EDCs), compounds that interfere with hormonal signaling. 3-Methylcholanthrene (3-MC) and dioxin (TCDD) are EDCs and prototypical aryl hydrocarbon receptor (AhR) agonists, and can inhibit ER signaling. However, in contrast to TCDD, 3-MC gives rise to metabolites with estrogenic properties. We compared gene expression profiles in HepG2 cells after exposure to 3-MC, TCDD, and the synthetic estrogen diethylstilbestrol (DES). Interestingly, we observed little overlap between the genetic networks activated by 3-MC and TCDD, two compounds sometimes considered as interchangeable AhR ligands. Like DES, 3-MC induced a number of ER-regulated genes and lead to recruitment of ERα to the promoters of such genes. Interestingly, in contrast to DES, the estrogenic effects exerted by 3-MC were exclusively observed in ERα, but not in ERß-expressing cells, suggesting ER isoform selectivity of 3-MC-derived metabolites.
Asunto(s)
Disruptores Endocrinos/farmacología , Redes Reguladoras de Genes , Metilcolantreno/farmacología , Dibenzodioxinas Policloradas/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Inmunoprecipitación de Cromatina , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genes , Células Hep G2 , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Activación Transcripcional/efectos de los fármacos , TranscriptomaRESUMEN
XAP2 (also known as aryl hydrocarbon receptor interacting protein, AIP) is originally identified as a negative regulator of the hepatitis B virus X-associated protein. Recent studies have expanded the range of XAP2 client proteins to include the nuclear receptor family of transcription factors. In this study, we show that XAP2 is recruited to the promoter of ERα regulated genes like the breast cancer marker gene pS2 or GREB1 and negatively regulate the expression of these genes in MCF-7 cells. Interestingly, we show that XAP2 downregulates the E2-dependent transcriptional activation in an estrogen receptor (ER) isoform-specific manner: XAP2 inhibits ERα but not ERß-mediated transcription. Thus, knockdown of intracellular XAP2 levels leads to increased ERα activity. XAP2 proteins, carrying mutations in their primary structures, loose the ability of interacting with ERα and can no longer regulate ER target gene transcription. Taken together, this study shows that XAP2 exerts a negative effect on ERα transcriptional activity and may thus prevent ERα-dependent events.
Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratones , Modelos Biológicos , Unión Proteica , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Elementos de Respuesta/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacosRESUMEN
Glucose transporter 4 (Glut4) is an important regulator of cellular glucose uptake in adipose tissue and skeletal muscle. The estrogen receptors α and ß (ERα and ERß) have been shown to regulate Glut4. However, the regulatory mechanisms are unclear, and there are conflicting results about the effects of the two ER isoforms on Glut4 activity. In this study we investigated how the lack of either ER isoform affects Glut4 expression in differentiated mouse embryonic fibroblasts. Our results demonstrate that Glut4 transcription is markedly reduced in cells lacking ERß, both basally and upon induction by liver X receptor. These changes in Glut4 expression could not be explained by the lack of ERß as ligand-activated transcription factor. They were rather brought about by hypermethylation of one single CpG in the Glut4 promoter in the ERß-deficient cells. This CpG is part of an Sp1-binding site, and Sp1 binding was reduced by its methylation. Treatment with Sp1 inhibitor diminished Glut4 expression in wild-type, but not in ERß-deficient cells, suggesting that reduced recruitment of Sp1 to the Glut4 promoter is responsible for the differences in Glut4 expression. Reintroduction of ERß into ERß-deficient cells partly restored Glut4 transcription and stabilized low DNA methylation after treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine. Our findings demonstrate the involvement of DNA methylation in Glut4 regulation and imply a novel function for ERß in mediating epigenetic events and thereby regulating gene expression.
Asunto(s)
Epigénesis Genética , Receptor beta de Estrógeno/metabolismo , Transportador de Glucosa de Tipo 4/genética , Adipocitos/metabolismo , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Núcleo Celular/metabolismo , Células Cultivadas , Islas de CpG , Metilación de ADN/efectos de los fármacos , Metilasas de Modificación del ADN/antagonistas & inhibidores , Decitabina , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Técnicas de Inactivación de Genes , Transportador de Glucosa de Tipo 4/metabolismo , Receptores X del Hígado , Ratones , Receptores Nucleares Huérfanos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción GenéticaRESUMEN
The aryl hydrocarbon receptor (AhR), in complex with its binding partner ARNT, mediates the cellular response to xenobiotic compounds such as the environmental pollutant dioxin. In addition, the AhR has important regulatory roles in normal physiology. For instance, there is extensive data showing an intricate relationship between the AhR and estrogen receptor (ER) pathways. This review focuses on the regulatory roles of AhR and ARNT, beyond the response to xenobiotics. In particular, the effects of AhR agonists on the estrogen signaling pathways and the role of ARNT as a modulator of ER activity are discussed.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Receptores de Hidrocarburo de Aril/fisiología , Receptores de Estrógenos/fisiología , Transducción de Señal/fisiología , Xenobióticos/toxicidad , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/agonistas , Translocador Nuclear del Receptor de Aril Hidrocarburo/antagonistas & inhibidores , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Humanos , Metilcolantreno/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Estrógenos/efectos de los fármacos , Xenobióticos/metabolismoAsunto(s)
Liasas de Carbono-Oxígeno/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Transactivadores/química , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células COS , Liasas de Carbono-Oxígeno/genética , Cisteína/metabolismo , ADN/metabolismo , Oxidación-Reducción , Unión Proteica , Estructura Terciaria de Proteína , Transactivadores/genéticaRESUMEN
Endocrine disruption refers to the ability of chemicals to interfere with hormonal systems, and has raised considerable concern in recent years. Endocrine disruptive chemicals (EDCs) pose a documented risk to wildlife and have the potential to negatively influence human health. This review focuses on the molecular mechanisms of endocrine disruption and the possible involvement of EDCs in metabolic disorders. The first part describes the role of aryl hydrocarbon receptor (AhR) and nuclear receptors (NRs) in mediating effects of EDCs, in particular, how cross-talk between AhR and NR pathways can lead to endocrine disruption. The second part deals with how these receptors are involved in metabolic functions and how their targeting by EDCs can lead to disturbances in glucose and fat metabolism. The article illustrates that, although there is accumulating data on molecular mechanisms of EDC action as well as on EDC involvement in metabolic disorders, there is still a great demand for data that can unite the mechanistic and the toxicological/epidemiological observations.
Asunto(s)
Disruptores Endocrinos/toxicidad , Enfermedades Metabólicas/inducido químicamente , Animales , Disruptores Endocrinos/envenenamiento , Humanos , Receptores de Superficie Celular/metabolismoRESUMEN
Retinoic acid receptor (RAR) and retinoid X receptor are ligand-induced transcription factors that belong to the nuclear receptor family. The receptors are activated by small hydrophobic compounds, such as all-trans-retinoic acid and 9-cis-retinoic acid, respectively. Interestingly, these receptors are also targets for a number of exogenous compounds. In this study, we characterized the biological activity of the 9-cis-substituted retinoic acid metabolite, S-4-oxo-9-cis-13,14-dihydro-retinoic acid (S-4o9cDH-RA). The endogenous levels of this metabolite in wild-type mice and rats were found to be higher than those of all-trans-retinoic acid, especially in the liver. Using cell-based luciferase reporter systems, we showed that S-4o9cDH-RA activates the transcription of retinoic acid response element-containing genes in several cell types, both from a simple 2xDR5 element and from the promoter of the natural retinoid target gene RARbeta2. In addition, quantitative RT-PCR analysis demonstrated that S-4o9cDH-RA treatment significantly increases the endogenous mRNA levels of the RAR target gene RARbeta2. Utilizing a limited proteolytic digestion assay, we showed that S-4o9cDH-RA induces conformational changes to both RARalpha and RARbeta in the same manner as does all-trans-retinoic acid, suggesting that S-4o9cDH-RA is indeed an endogenous ligand for these receptors. These in vitro results were corroborated in an in vivo system, where S-4o9cDH-RA induced morphological changes similar to those of all-trans-retinoic acid in the developing chicken wing bud. When locally applied to the wing bud, S-4o9cDH-RA induced digit pattern duplications in a dose-dependent fashion. The results illustrate that S-4o9cDH-RA closely mimics all-trans-retinoic acid with regard to pattern respecification. Finally, using quantitative RT-PCR analysis, we showed that S-4o9cDH-RA induces the transcription of several retinoic acid-regulated genes in chick wing buds, including Hoxb8, RARbeta2, shh, Cyp26 and bmp2. Although S-4o9cDH-RA was less potent when compared with all-trans-retinoic acid, the findings clearly demonstrate that S-4o9cDH-RA has the capacity to bind and activate nuclear retinoid receptors and regulate gene transcription both in vitro and in vivo.
Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/fisiología , Tretinoina/análogos & derivados , Tretinoina/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Embrión de Pollo , Pollos , Electroforesis en Gel de Poliacrilamida , Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Esbozos de los Miembros/efectos de los fármacos , Esbozos de los Miembros/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Estructura Molecular , Regiones Promotoras Genéticas/genética , Ratas , Receptores de Ácido Retinoico/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Receptor alfa de Ácido Retinoico , Transducción de Señal/efectos de los fármacos , Transfección , Tretinoina/química , Tretinoina/farmacología , Alas de Animales/efectos de los fármacos , Alas de Animales/embriologíaRESUMEN
Circadian regulation of gene expression plays a major role in health and disease. The precise role of the circadian system remains to be clarified, but it is known that circadian proteins generate physiological rhythms in organisms by regulating clock-controlled target genes. The estrogen receptor beta (ERbeta) is, together with ERalpha, a member of the nuclear receptor superfamily and a key mediator of estrogen action. Interestingly, recent studies show that disturbed circadian rhythmicity in humans can increase the risk of reproductive malfunctions, suggesting a link between the circadian system and ER-mediated transcription pathways. Here, we identify a novel level of regulation of estrogen signaling where ERbeta, but not ERalpha, is controlled by circadian clock proteins. We show that ERbeta mRNA levels fluctuate in different peripheral tissues following a robust circadian pattern, with a peak at the light-dark transition, which is maintained under free-running conditions. Interestingly, this oscillation is abolished in clock-deficient BMAL1 knockout mice. Circadian control of ERbeta expression is exerted through a conserved E-box element in the ERbeta promoter region that recruits circadian regulatory factors. Furthermore, using small interfering RNA-mediated knockdown assays, we show that the expression levels of the circadian regulatory factors directly influence estrogen signaling by regulating the intracellular levels of endogenous ERbeta.
Asunto(s)
Receptor beta de Estrógeno/metabolismo , Regulación de la Expresión Génica , Transactivadores/metabolismo , Factores de Transcripción ARNTL , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Ritmo Circadiano , Receptor beta de Estrógeno/genética , Humanos , Pulmón/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Circadianas Period , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Alineación de Secuencia , Homología de Secuencia , Transducción de Señal , Transactivadores/genética , Transcripción Genética/genéticaRESUMEN
Transcriptional control of hypothalamic thyrotropin-releasing hormone (TRH) integrates central regulation of the hypothalamo-hypophyseal-thyroid axis and hence thyroid hormone (triiodothyronine (T(3))) homeostasis. The two beta thyroid hormone receptors, TRbeta1 and TRbeta2, contribute to T(3) feedback on TRH, with TRbeta1 having a more important role in the activation of TRH transcription. How TRbeta1 fulfils its role in activating TRH gene transcription is unknown. By using a yeast two-hybrid screening of a mouse hypothalamic complementary DNA library, we identified a novel partner for TRbeta1, hepatitis virus B X-associated protein 2 (XAP2), a protein first identified as a co-chaperone protein. TR-XAP2 interactions were TR isoform specific, being observed only with TRbeta1, and were enhanced by T(3) both in yeast and mammalian cells. Furthermore, small inhibitory RNA-mediated knockdown of XAP2 in vitro affected the stability of TRbeta1. In vivo, siXAP2 abrogated specifically TRbeta1-mediated (but not TRbeta2) activation of hypothalamic TRH transcription. This study provides the first in vivo demonstration of a regulatory, physiological role for XAP2.
Asunto(s)
Hipotálamo/metabolismo , Proteínas/metabolismo , Proteínas/fisiología , Hormona Liberadora de Tirotropina/metabolismo , Activación Transcripcional , Animales , Regulación de la Expresión Génica , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Distribución Tisular , TransfecciónRESUMEN
The dioxin receptor is a ligand-dependent transcription factor that mediates the biological effects of dioxin and related environmental pollutants. In the absence of ligand the receptor is present in the cytoplasmic compartment of the cell associated with the hsp90-dependent chaperone complex. This complex regulates several functions of the receptor such as ligand binding and nuclear import. Furthermore, intracellular localization of the receptor is modulated by multiple factors such as the export protein CRM-1 and the hsp90-associated immunophilin XAP-2. We have identified the mechanism of XAP-2-induced cytoplasmic localization of the receptor and studied the potential cross-talk between CRM-1 and XAP-2. We show that XAP-2 anchors the ligand-free receptor to cytoskeletal structures. This effect is blocked upon treatment with the actin inhibitor cytochalasin B, whereas the tubulin inhibitor colchicine had no effect on receptor localization. In addition, we show that the receptor interacts with CRM-1 both in the presence and absence of ligand. CRM-1-mediated nuclear export occurs independently of XAP-2. Our data provide evidence that CRM-1 and XAP-2 act in parallel through different mechanisms and target different interfaces of the receptor. These results suggest that two pathways cooperate to localize the non-activated receptor in the cytoplasmic compartment of the cell.