Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Br J Pharmacol ; 173(18): 2752-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27423137

RESUMEN

BACKGROUND AND PURPOSE: Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists. EXPERIMENTAL APPROACH: We investigated whether the PAR2 antagonist GB88 inhibits protease-evoked activation of nociceptors and protease-stimulated oedema and hyperalgesia in rodents. KEY RESULTS: Intraplantar injection of trypsin, cathespsin-S or elastase stimulated mechanical and thermal hyperalgesia and oedema in mice. Oral GB88 or par2 deletion inhibited the algesic and proinflammatory actions of all three proteases, but did not affect basal responses. GB88 also prevented pronociceptive and proinflammatory effects of the PAR2-selective agonists 2-furoyl-LIGRLO-NH2 and AC264613. GB88 did not affect capsaicin-evoked hyperalgesia or inflammation. Trypsin, cathepsin-S and elastase increased [Ca(2+) ]i in rat nociceptors, which expressed PAR2. GB88 inhibited this activation of nociceptors by all three proteases, but did not affect capsaicin-evoked activation of nociceptors or inhibit the catalytic activity of the three proteases. CONCLUSIONS AND IMPLICATIONS: GB88 inhibits the capacity of canonical and biased protease agonists of PAR2 to cause nociception and inflammation.


Asunto(s)
Inflamación/metabolismo , Nociceptores/metabolismo , Oligopéptidos/farmacología , Receptor PAR-2/agonistas , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor PAR-2/deficiencia , Receptor PAR-2/metabolismo , Relación Estructura-Actividad
2.
J Mol Med (Berl) ; 93(12): 1297-309, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26330151

RESUMEN

UNLABELLED: Recent studies implicate TRPV4 receptors in visceral pain signaling and intestinal inflammation. Our aim was to evaluate the role of TRPV4 in the control of gastrointestinal (GI) motility and to establish the underlying mechanisms. We used immunohistochemistry and PCR to study TRPV4 expression in the GI tract. The effect of TRPV4 activation on GI motility was characterized using in vitro and in vivo motility assays. Calcium and nitric oxide (NO) imaging were performed to study the intracellular signaling pathways. Finally, TRPV4 expression was examined in the colon of healthy human subjects. We demonstrated that TRPV4 can be found on myenteric neurons of the colon and is co-localized with NO synthase (NOS-1). In vitro, the TRPV4 agonist GSK1016790A reduced colonic contractility and increased inhibitory neurotransmission. In vivo, TRPV4 activation slowed GI motility and reduced stool production in mouse models mimicking pathophysiological conditions. We also showed that TRPV4 activation inhibited GI motility by reducing NO-dependent Ca(2+) release from enteric neurons. In conclusion, TRPV4 is involved in the regulation of GI motility in health and disease. KEY MESSAGES: • Recent studies implicate TRPV4 in pain signaling and intestinal inflammation. • Our aim was to characterize the role of TRPV4 in the control of GI motility. • We found that TRPV4 activation reduced colonic contractility. • Our studies also showed altered TRPV4 mRNA expression in IBS-C patients. • TRPV4 may be a novel pharmacological target in functional GI diseases.


Asunto(s)
Colon/fisiología , Motilidad Gastrointestinal/genética , Óxido Nítrico/metabolismo , Transmisión Sináptica/genética , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Colon/efectos de los fármacos , Colon/fisiopatología , Modelos Animales de Enfermedad , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Expresión Génica , Guanilato Ciclasa/metabolismo , Humanos , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Plexo Mientérico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Sulfonamidas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores
3.
Neurogastroenterol Motil ; 27(11): 1675-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26303377

RESUMEN

BACKGROUND: Proteases play a major role in inflammatory diseases of the gastrointestinal tract. Activatable probes are a major technological advance, enabling sensitive detection of active proteases in tissue samples. Our aim was to synthesize an activatable probe for cathepsin S and validate its use in a mouse model of colitis. METHODS: We designed and synthesized a new fluorescent activatable probe, NB200, for the detection of active cathepsin S. Colitis was induced in C57BL/6 mice by the administration of 3% dextran sulfate sodium (DSS). Homogenized mouse colons, with or without the addition of the specific cathepsin S inhibitor MV026031, were incubated with NB200 in a fluorescent plate reader. KEY RESULTS: NB200 selectively detected purified cathepsin S and not other common inflammatory proteases. Homogenates of colon from mice with DSS colitis induced a significant fluorescent increase when compared to control animals (control vs DSS: p < 0.05 at 200 min and p < 0.01 at 220-240 min), indicating cathepsin S activation. The cathepsin S inhibitor abolished this increase in fluorescence (DSS vs DSS + MV026031: p < 0.05 at 140 min, p < 0.01 at 180 min, p < 0.001 at 200-240 min), which confirms cathepsin S activation. Cathepsin S activity correlated with the disease activity index (Spearman r = 0.77, p = 0.017). CONCLUSIONS & INFERENCES: Our investigation has demonstrated the utility of activatable probes for detecting protease activity in intestinal inflammation. Panels of such probes may allow 'signature' protease profiles to be established for a range of inflammatory diseases and disorders.


Asunto(s)
Catepsinas/análisis , Colitis/enzimología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Animales , Colitis/inducido químicamente , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL
4.
J Anim Sci ; 90(4): 1203-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22178854

RESUMEN

The functioning of the gastrointestinal tract is under the control of the most extensive system of peripheral neurons in the body, the enteric nervous system, and the largest endocrine system of the body, the GEP endocrine system. The enteric nervous system in large mammals contains 500 million neurons, and the GEP endocrine system produces more than 30 hormones. Numerous enteric neuropathies affecting both humans and animals have been described and digestive disorders affect commercially important species, such as horses and cattle. The most severe enteric neuropathies (e.g., lethal white syndrome in horses or Hirschsprung's disease in humans) can be fatal. Also, horses with ileus or other digestive disorders are commonly euthanized. In this review we discuss examples of enteric neuropathies that affect agricultural animals and humans: prion disease, postoperative ileus, distal enteric aganglionosis, and infective diarrhea. Enteric neurons and glia are a location of prion proteins and are involved in transmission of the infection from gut to brain and brain to gut. Postoperative ileus is a complex disorder involving the local inhibitory effects of sympathetic nervous system activation and the release of opioids, presumably from enteric neurons. Intestinal inflammation, especially of the external muscle that includes enteric ganglia, also occurs in ileus. Congenital distal bowel aganglionosis, responsible for lethal white syndrome in horses, Hirschsprung's disease in humans, and similar conditions in mice and rats, is a fatal condition if untreated. Mutations of the same genes can cause the condition in each of these species. The only effective current treatment is surgical removal of the aganglionic bowel. Infectious diarrheas involve activation of enteric secretomotor neurons by pathogens and the toxins they produce, which causes substantial fluid loss. Strategies to target enteric neurons in the treatment of secretory diarrheas have not been developed. Disorders of enteroendocrine cells, other than GEP endocrine tumors, are less well documented. However, evidence for the involvement of gut endocrine cells in a subset of patients with irritable bowel syndrome, and in the symptomology of celiac disease, has been demonstrated. Further investigation of the involvement of enteric neural and endocrine signaling systems in digestive disorders, especially in agricultural and companion animals, may lead to diagnostic and therapeutic advances.


Asunto(s)
Sistema Endocrino/fisiopatología , Sistema Nervioso Entérico/fisiopatología , Enfermedades Gastrointestinales/veterinaria , Tracto Gastrointestinal/fisiopatología , Animales , Bovinos , Diarrea/fisiopatología , Diarrea/veterinaria , Enfermedades Gastrointestinales/fisiopatología , Tracto Gastrointestinal/inervación , Cabras/fisiología , Enfermedad de Hirschsprung/fisiopatología , Enfermedades de los Caballos/fisiopatología , Caballos/fisiología , Humanos , Ileus/fisiopatología , Ileus/veterinaria , Enfermedades por Prión/fisiopatología , Enfermedades por Prión/transmisión , Enfermedades por Prión/veterinaria , Ovinos/fisiología
5.
Neurogastroenterol Motil ; 23(11): 980-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21895878

RESUMEN

Nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS) is a transmitter of inhibitory neurons supplying the muscle of the gastrointestinal tract. Transmission from these neurons is necessary for sphincter relaxation that allows the passage of gut contents, and also for relaxation of muscle during propulsive activity in the colon. There are deficiencies of transmission from NOS neurons to the lower esophageal sphincter in esophageal achalasia, to the pyloric sphincter in hypertrophic pyloric stenosis and to the internal anal sphincter in colonic achalasia. Deficits in NOS neurons are observed in two disorders in which colonic propulsion fails, Hirschsprung's disease and Chagas' disease. In addition, damage to NOS neurons occurs when there is stress to cells, in diabetes, resulting in gastroparesis, and following ischemia and reperfusion. A number of factors may contribute to the propensity of NOS neurons to be involved in enteric neuropathies. One of these is the failure of the neurons to maintain Ca(2+) homeostasis. In neurons in general, stress can increase cytoplasmic Ca(2+), causing a Ca(2+) toxicity. NOS neurons face the additional problem that NOS is activated by Ca(2+). This is hypothesized to produce an excess of NO, whose free radical properties can cause cell damage, which is exacerbated by peroxynitrite formed when NO reacts with oxygen free radicals.


Asunto(s)
Sistema Nervioso Entérico/enzimología , Sistema Nervioso Entérico/patología , Sistema Nervioso Entérico/fisiopatología , Neuronas/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Envejecimiento/fisiología , Animales , Enfermedad de Chagas/enzimología , Enfermedad de Chagas/patología , Enfermedad de Chagas/fisiopatología , Sistema Nervioso Entérico/citología , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/fisiopatología , Enfermedad de Hirschsprung/enzimología , Enfermedad de Hirschsprung/patología , Enfermedad de Hirschsprung/fisiopatología , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Inflamación/fisiopatología , Daño por Reperfusión/patología
6.
Neurogastroenterol Motil ; 22(7): 814-25, e227-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20236244

RESUMEN

BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética , Animales , Western Blotting , Línea Celular , AMP Cíclico/biosíntesis , Técnica del Anticuerpo Fluorescente , Vaciamiento Gástrico , Motilidad Gastrointestinal , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/metabolismo , Inmunohistoquímica , Intestinos/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Neuronas Motoras/fisiología , Plexo Mientérico/metabolismo , Óxido Nítrico/fisiología , ARN/biosíntesis , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Am J Physiol Gastrointest Liver Physiol ; 294(5): G1245-56, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18308856

RESUMEN

Tachykinins, acting through NK(3) receptors (NK(3)R), contribute to excitatory transmission to intrinsic primary afferent neurons (IPANs) of the small intestine. Although this transmission is dependent on protein kinase C (PKC), its maintenance could depend on protein kinase D (PKD), a downstream target of PKC. Here we show that PKD1/2-immunoreactivity occurred exclusively in IPANs of the guinea pig ileum, demonstrated by double staining with the IPAN marker NeuN. PKCepsilon was also colocalized with PKD1/2 in IPANs. PKCepsilon and PKD1/2 trafficking was studied in enteric neurons within whole mounts of the ileal wall. In untreated preparations, PKCepsilon and PKD1/2 were cytosolic and no signal for activated (phosphorylated) PKD was detected. The NK(3)R agonist senktide evoked a transient translocation of PKCepsilon and PKD1/2 from the cytosol to the plasma membrane and induced PKD1/2 phosphorylation at the plasma membrane. PKCepsilon translocation was maximal at 10 s and returned to the cytosol within 2 min. Phosphorylated-PKD1/2 was detected at the plasma membrane within 15 s and translocated to the cytosol by 2 min, where it remained active up to 30 min after NK(3)R stimulation. PKD1/2 activation was reduced by a PKCepsilon inhibitor and prevented by NK(3)R inhibition. NK(3)R-mediated PKCepsilon and PKD activation was confirmed in HEK293 cells transiently expressing NK(3)R and green fluorescent protein-tagged PKCepsilon, PKD1, PKD2, or PKD3. Senktide caused membrane translocation and activation of kinases within 30 s. After 15 min, phosphorylated PKD had returned to the cytosol. PKD activation was confirmed through Western blotting. Thus stimulation of NK(3)R activates PKCepsilon and PKD in sequence, and sequential activation of these kinases may account for rapid and prolonged modulation of IPAN function.


Asunto(s)
Plexo Mientérico/fisiología , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Neuroquinina-3/fisiología , Acetatos/farmacología , Animales , Línea Celular , Diterpenos/farmacología , Femenino , Cobayas , Humanos , Íleon/inervación , Cinética , Masculino , Plexo Mientérico/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Fragmentos de Péptidos/farmacología , Forbol 12,13-Dibutirato/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/genética , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Proteína Quinasa C-epsilon/genética , Proteína Quinasa D2 , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuroquinina-3/agonistas , Receptores de Neuroquinina-3/antagonistas & inhibidores , Sustancia P/análogos & derivados , Sustancia P/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda