Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894717

RESUMEN

The Atg12 protein in yeast is an indispensable polypeptide in the highly conserved ubiquitin-like conjugation system operating in the macroautophagy/autophagy pathway. Atg12 is covalently conjugated to Atg5 through the action of Atg7 and Atg10; the Atg12-Atg5 conjugate binds Atg16 to form an E3 ligase that functions in a separate conjugation pathway involving Atg8. Atg12 is comprised of a ubiquitin-like (UBL) domain preceded at the N terminus by an intrinsically disordered protein region (IDPR), a domain that comprises a major portion of the protein but remains elusive in its conformation and function. Here, we show that the IDPR in unconjugated Atg12 is positioned in proximity to the UBL domain, a configuration that is important for the functional structure of the protein. A major deletion in the IDPR disrupts intactness of the UBL domain at the unconjugated C terminus, and a mutation in the predicted α0 helix in the IDPR prevents Atg12 from binding to Atg7 and Atg10, which ultimately affects the protein function in the ubiquitin-like conjugation cascade. These findings provide evidence that the IDPR is an indispensable part of the Atg12 protein from yeast.


Asunto(s)
Proteína 12 Relacionada con la Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Proteína 5 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
2.
Proc Natl Acad Sci U S A ; 114(47): E10112-E10121, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29114050

RESUMEN

The Atg20 and Snx4/Atg24 proteins have been identified in a screen for mutants defective in a type of selective macroautophagy/autophagy. Both proteins are connected to the Atg1 kinase complex, which is involved in autophagy initiation, and bind phosphatidylinositol-3-phosphate. Atg20 and Snx4 contain putative BAR domains, suggesting a possible role in membrane deformation, but they have been relatively uncharacterized. Here we demonstrate that, in addition to its function in selective autophagy, Atg20 plays a critical role in the efficient induction of nonselective autophagy. Atg20 is a dynamic posttranslationally modified protein that engages both structurally stable (PX and BAR) and intrinsically disordered domains for its function. In addition to its PX and BAR domains, Atg20 uses a third membrane-binding module, a membrane-inducible amphipathic helix present in a previously undescribed location in Atg20 within the putative BAR domain. Taken together, these findings yield insights into the molecular mechanism of the autophagy machinery.


Asunto(s)
Proteínas Relacionadas con la Autofagia/química , Autofagia/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Nexinas de Clasificación/química , Secuencias de Aminoácidos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(31): E2875-84, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858448

RESUMEN

Macroautophagy (hereafter autophagy) functions in the nonselective clearance of cytoplasm. This process participates in many aspects of cell physiology, and is conserved in all eukaryotes. Autophagy begins with the organization of the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. Autophagy occurs at a basal level and can be induced by various types of stress; the process must be tightly regulated because insufficient or excessive autophagy can be deleterious. A complex composed of Atg17-Atg31-Atg29 is vital for PAS organization and autophagy induction, implying a significant role in autophagy regulation. In this study, we demonstrate that Atg29 is a phosphorylated protein and that this modification is critical to its function; alanine substitution at the phosphorylation sites blocks its interaction with the scaffold protein Atg11 and its ability to facilitate assembly of the PAS. Atg29 has the characteristics of an intrinsically disordered protein, suggesting that it undergoes dynamic conformational changes on interaction with a binding partner(s). Finally, single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Fosforilación/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
4.
Autophagy ; 20(1): 1-3, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37848407

RESUMEN

A multifunctional role of Atg8-family proteins (Atg8 from yeast and human LC3 and GABARAP subfamilies, all referred to here as ATG8s) in macroautophagy/autophagy is carried out by two protein domains, the N-terminal helical domain (NHD) and ubiquitin-like (UBL) domain. Previous studies showed that the NHD of PE-conjugated ATG8s mediates membrane hemifusion via a direct interaction with lipids in trans-membrane association, which would require the NHD in lipidated ATG8s to adopt a solvent-oriented, "open", conformation that unmasks a UBL domain surface needed for membrane tethering. A purpose of the "closed" conformation of the NHD masking the tethering surface on the UBL domain, a conformation seen in the most structures of non-lipidated ATG8s, remained elusive. A recent study by Zhang et al. discussed in this article, showed that the N terminus of lipidated human ATG8s adopts the "closed" conformation when it interacts with the membrane in cis-membrane association, i.e. with the same membrane ATG8 is anchored to. This finding suggests functions for two distinct conformations of the NHD in lipidated ATG8s and raises questions about determinants controlling cis- or trans-membrane associations of the NHD in ATG8-PE.Abbreviations: AIM, Atg8-family interacting motif; 3D-CLEM, three-dimensional correlative light and electron microscopy; FRET, Förster/fluorescence resonance energy transfer; LIR, LC3-interacting motif; MD, molecular dynamics; NHD, N-terminal helical domain; UBL, ubiquitin-like.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Humanos , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Macroautofagia
5.
Autophagy ; 20(10): 2338-2345, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38808635

RESUMEN

The noncanonical ubiquitin-like conjugation cascade involving the E1 (Atg7), E2 (Atg3, Atg10), and E3 (Atg12-Atg5-Atg16 complex) enzymes is essential for incorporation of Atg8 into the growing phagophore via covalent linkage to PE. This process is an indispensable step in autophagy. Atg8 and E1-E3 enzymes are the first subset from the core autophagy protein machinery structures that were investigated in earlier studies by crystallographic analyses of globular domains. However, research over the past decade shows that many important functions in the conjugation machinery are mediated by intrinsically disordered protein regions (IDPRs) - parts of the protein that do not adopt a stable secondary or tertiary structure, which are inherently dynamic and well suited for protein-membrane interactions but are invisible in protein crystals. Here, we summarize earlier and recent findings on the autophagy conjugation machinery by focusing on the IDPRs. This summary reveals that IDPRs, originally considered dispensable, are in fact major players and a driving force in the function of the autophagy conjugation system. Abbreviation: AD, activation domain of Atg7; AH, amphipathic helix; AIM, Atg8-family interacting motif; CL, catalytic loop (of Atg7); CTD, C-terminal domain; FR, flexible region (of Atg3 or Atg10); GUV, giant unilammelar vesicles; HR, handle region (of Atg3); IDPR, intrinsically disordered protein region; IDPs: intrinsically disordered proteins; LIR, LC3-interacting region; NHD: N-terminal helical domain; NMR, nuclear magnetic resonance; PE, phosphatidylethanolamine; UBL, ubiquitin like.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Autofagia , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Animales
6.
Autophagy ; : 1-4, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045779

RESUMEN

Vac8 is the sole armadillo-repeat (ARM) protein in yeast. The function of Vac8 in the cytoplasm-to-vacuole targeting pathway has been known for a long time but its role in the phagophore assembly site localization and recruitment of autophagy-related protein complexes is slowly coming to light. Because Vac8 is also involved in formation of the nuclear-vacuole junction and vacuole inheritance, the protein needs to be a competent and wide-ranging mediator of cellular processes. In this article, we discuss two recent studies reporting on Vac8 and its binding partners. We describe Vac8 in the context of crystallized protein complexes as well as predicted models to reveal the versatility of Vac8 and its potential to become a subject of future autophagy research.Abbreviation: ARM, armadillo repeat; Cvt, cytoplasm-to-vacuole targeting; IDPR, intrinsically disordered protein region NVJ, nucleus-vacuole junction; SEC, size-exclusion chromatography.

7.
Autophagy ; 19(5): 1375-1377, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36722820

RESUMEN

Transitions from the early to late phagophore, which occur to engulf cytoplasmic material within an autophagosome for macroautophagic/autophagic degradation, involve dynamic ultrastructural changes that are not fully understood. A recent study combined cryo-electron tomography (cryo-ET) with extensive computational analysis to get a better insight into autophagosome biogenesis in situ within yeast cells. This approach disclosed new information on the shape of autophagic structures, their contacts with surrounding organelles, membrane sources, and mechanisms of transition. Together, these results provide new directions for autophagy research, and show the potential of cryo-ET in cell biology.Abbreviations: Cryo-ET, cryo-electron tomography; ER, endoplasmic reticulum; IMDa, intermembrane distance in the autophagosome; IMDp, intermembrane distance in the phagophore; LD, lipid droplets.


Asunto(s)
Autofagosomas , Autofagia , Autofagosomas/metabolismo , Tomografía con Microscopio Electrónico , Macroautofagia , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae
8.
Biochemistry ; 51(18): 3808-18, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22512418

RESUMEN

Hydroxide ion inhibits Photosystem II (PSII) activity by extracting Cl(-) from its binding site in the O(2)-evolving complex (OEC) under continuous illumination [Critchley, C., et al. (1982) Biochim. Biophys. Acta 682, 436]. The experiments reported here examine whether two subunits of PsbO, the manganese-stabilizing protein, bound to eukaryotic PSII play a role in protecting the OEC against OH(-) inhibition. The data show that the PSII binding properties of PsbO affect the pH optimum for O(2) evolution activity as well as the Cl(-) affinity of the OEC that decreases with an increasing pH. These results suggest that PsbO functions as a barrier against inhibition of the OEC by OH(-). Through facilitation of efficient retention of Cl(-) in PSII [Popelkova, H., et al. (2008) Biochemistry 47, 12593], PsbO influences the ability of Cl(-) to resist OH(-)-induced release from its site in the OEC. Preventing inhibition by OH(-) allows for normal (short) lifetimes of the S(2) and S(3) states in darkness [Roose, J. L., et al. (2011) Biochemistry 50, 5988] and for maximal steady-state activity by PSII. The data presented here indicate that activation of H(2)O oxidation occurs with a pK(a) of ∼6.5, which could be a function of deprotonation of one or more amino acid residues that reside near the OEC active site on the D1 and CP43 intrinsic subunits of the PSII reaction center.


Asunto(s)
Cloruros/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Hidróxidos/farmacología , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Complejo de Proteína del Fotosistema II/química , Spinacia oleracea
9.
Photosynth Res ; 112(2): 117-28, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22614952

RESUMEN

The N-terminal ¹E-6L domain of the manganese-stabilizing protein (PsbO) from spinach prevents non-specific binding of the subunit to photosystem II (PSII) and deletions of the ¹E-7T or ¹E-¹5T sequences from the PsbO N-terminus reduce or impair, respectively, functional binding of PsbO to PSII (Popelkova et al., Biochemistry 42:6193-6200, 2003). The work presented here provides deeper insights into the interaction of PsbO with PSII. The data show that a single mutation, ¹5T → A in mature PsbO from spinach reduces the stoichiometry of its functional binding from two to one subunit per PSII and decreases reconstitution of activity to about 45 % of the wild-type control. Replacement of the ¹E-6L domain with 6M in the T15A PsbO mutant has no additional negative effect on recovery of O2 evolution activity, but it significantly weakens both functional and nonspecific binding of the truncated mutant to PSII. These results suggest that the ¹5T side-chain by itself is essential for binding of one of two PsbO subunits to eukaryotic PSII and that specific PSII-binding sites for PsbO are distinguishable; one PSII-binding site does not require PsbO-¹5T and probably interacts with the other N-terminal domain of PsbO. Identity of the latter domain is revealed by a requirement for the presence of the ¹E-6L sequence that is shown here to be necessary for high-affinity binding of PsbO to PSII. When combined with previous results, the data presented here lead to a more detailed model for PsbO binding in eukaryotic PSII.


Asunto(s)
Sondas Moleculares , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/química , Treonina/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Proteínas de Plantas/química , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
10.
Autophagy ; 18(11): 2515-2518, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041015

RESUMEN

Substrates that are selected for degradation by autophagy interact in more complex eukaryotes with Atg8-family proteins via the LC3-interacting region (LIR) that is often preceded by either acidic residues or phosphorylated serine or threonine. These upstream amino acid residues increase the binding affinity of the LIR motif to its binding site on the surface of LC3/GABARAP. It is not fully understood whether or how phosphorylation functionally replaces acidic residues in the LIR-Atg8-family protein interactions. A recent study by Chino et al. discussed in this article analyzed the phosphorylation of two serine residues upstream of the LIR motif in TEX264, a reticulophagy receptor that exhibits a high binding affinity to LC3/GABARAP proteins. The authors found a structural basis for the high-affinity interaction yielded by phosphorylation but not by an acidic residue in place of phosphoserine. Furthermore, finding that phosphorylation of TEX264 generates its high binding affinity to Atg8-family proteins uncovers a mechanistic alternative to that utilized by other reticulophagy receptors when they interact with LC3/GABARAP.Abbreviations: CSNK2: casein kinase 2; ER: endoplasmic reticulum; IDPR: intrinsically disordered protein region; LIR: LC3-interacting region; p-S: phosphorylated serine.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Fosforilación , Proteínas Asociadas a Microtúbulos/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Serina , Unión Proteica
11.
Autophagy ; 18(2): 237-239, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35133947

RESUMEN

RB1CC1/FIP200 is a subunit of the ULK1 complex in more complex eukaryotes. This large polypeptide was proposed to be a functional homolog of the Atg17 and Atg11 scaffolding proteins in yeast. Previous studies showed that RB1CC1 can bind to various proteins of the macroautophagy/autophagy machinery, where the RB1CC1 Claw domain directly interacts with a short linear segment of its interactors. A mechanistic insight into how the small globular RB1CC1 Claw domain can interact with such an array of structurally variable proteins has been elusive. The recent study by Zhou et al., discussed here, yields structural data that not only provide a unifying mechanistic explanation of these interactions, but also reveals previously unknown RB1CC1 interactors and opens a new field for exploration of autophagy regulation.Abbreviations: FIR: FIP200-interacting region; LIR: LC3-interacting region; pS/p-S: phosphorylated serine.


Asunto(s)
Autofagia , Proteínas de Ciclo Celular , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo
12.
Membranes (Basel) ; 12(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35629783

RESUMEN

Intrinsically disordered proteins and protein regions (IDPs/IDPRs) are mainly involved in signaling pathways, where fast regulation, temporal interactions, promiscuous interactions, and assemblies of structurally diverse components including membranes are essential. The autophagy pathway builds, de novo, a membrane organelle, the autophagosome, using carefully orchestrated interactions between proteins and lipid bilayers. Here, we discuss molecular mechanisms related to the protein disorder-based interactions of the autophagy machinery with membranes. We describe not only membrane binding phenomenon, but also examples of membrane remodeling processes including membrane tethering, bending, curvature sensing, and/or fragmentation of membrane organelles such as the endoplasmic reticulum, which is an important membrane source as well as cargo for autophagy. Summary of the current state of knowledge presented here will hopefully inspire new studies. A profound understanding of the autophagic protein-membrane interface is essential for advancements in therapeutic interventions against major human diseases, in which autophagy is involved including neurodegeneration, cancer as well as cardiovascular, metabolic, infectious, musculoskeletal, and other disorders.

13.
Autophagy ; 18(10): 2510-2511, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867625

RESUMEN

Small 30-nm vesicles containing the integral membrane protein Atg9 provide the initial membrane source for autophagy in yeast. Atg23 is an Atg9 binding protein that is required for Atg9 vesicle trafficking but whose exact function is unknown. In our recent paper, we explored the function of Atg23 using an approach combining cellular biology and biochemistry on purified protein. We determined that Atg23 is an elongated dimer spanning 320 Å in length. We also demonstrated that Atg23 is a membrane-binding and -tethering protein. Furthermore, we identified a series of amino acids residing in a putative coiled-coil region that when mutated prevent Atg23 dimer formation resulting in a stable Atg23 monomer. Last, we demonstrated that when monomeric Atg23 is expressed in yeast lacking Atg23, this leads to a loss of Atg23 puncta, a reduction in Atg9 puncta, a reduction in nonselective autophagy and a complete block in the cytoplasm-to-vacuole targeting (Cvt) pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
14.
Cell Rep ; 39(3): 110702, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443167

RESUMEN

Eukaryotes maintain cellular health through the engulfment and subsequent degradation of intracellular cargo using macroautophagy. The function of Atg23, despite being critical to the efficiency of this process, is unclear due to a lack of biochemical investigations and an absence of any structural information. In this study, we use a combination of in vitro and in vivo methods to show that Atg23 exists primarily as a homodimer, a conformation facilitated by a putative amphipathic helix. We utilize small-angle X-ray scattering to monitor the overall shape of Atg23, revealing that it contains an extended rod-like structure spanning approximately 320 Å. We also demonstrate that Atg23 interacts with membranes directly, primarily through electrostatic interactions, and that these interactions lead to vesicle tethering. Finally, mutation of the hydrophobic face of the putative amphipathic helix completely precludes dimer formation, leading to severely impaired subcellular localization, vesicle tethering, Atg9 binding, and autophagic efficiency.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Dimerización , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Autophagy ; 17(8): 1805-1808, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34338142

RESUMEN

The Atg3 protein is highly homologous from yeast to human. Atg3 functions as an E2-like enzyme promoting conjugation of Atg8-family proteins to phosphatidylethanolamine (PE), a lipid molecule embedded in the growing phagophore membrane during stress-induced autophagy. Over the last decade, Atg3 became one of the most explored autophagy proteins, resulting in observations that provided specific insights into the structural mechanisms of its function. In this article, we describe a recent study by Ye et al. that reveals, using the human ATG3, how the membrane binding capability of the enzyme is tightly linked to its conjugation activity. We summarize the current knowledge on important mechanisms that involve protein-protein or protein-membrane interactions of Atg3 and that ultimately lead to efficient Atg8-PE conjugation.Abbreviations: AH: amphipathic helix; FR: flexible region; HR: handle region; NMR: nuclear magnetic resonance.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Mol Biol ; 433(5): 166809, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484718

RESUMEN

Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/química , Membrana Celular/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Autofagia/genética , Proteína 12 Relacionada con la Autofagia/genética , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Membrana Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Liposomas/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
17.
Prog Mol Biol Transl Sci ; 174: 263-305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32828468

RESUMEN

Autophagy is a major catabolic pathway that must be tightly regulated to maintain cellular homeostasis. Protein intrinsic disorder provides a very suitable conformation for regulation; accordingly, the molecular machinery of autophagy is significantly enriched in intrinsically disordered proteins and protein regions (IDPs/IDPRs). Despite experimental challenges that the characterization of IDPRs encounters, remarkable progress has been made in recent years in revealing various roles of IDPs/IDPRs in autophagy. This chapter describes the autophagy pathway from a specific point of view, that of IDPRs. It focuses in detail on structural and mechanistic functions in autophagy that are executed by disordered regions. Via a description of autophagosome biogenesis, linking the cargo to the autophagy machinery, as well as a discussion of certain post-translational regulations, this review reveals many indispensable roles of IDPRs in the functional autophagy pathway. Devastating pathologies such as neurodegeneration, cancer, or diabetes have been linked to a malfunction in IDPs/IDPRs. The same pathologies are associated with dysfunctional autophagy, indicating that autophagic IDPRs may be a paramount causative factor. Several disease-related mechanisms of the autophagy pathway involving protein intrinsic disorder are reported in this chapter, to illustrate a wide-ranging potential of IDPRs in the therapeutic modulation of autophagy.


Asunto(s)
Autofagia , Proteínas Intrínsecamente Desordenadas/metabolismo , Envejecimiento/patología , Regulación Alostérica , Animales , Autofagosomas/metabolismo , Humanos , Modelos Moleculares
18.
Autophagy ; 16(4): 585-588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31996076

RESUMEN

The autophagy receptor for selective reticulophagy, RETREG1/FAM134B is essential for ER maintenance, and its dysfunction is associated with neuronal disorders, vascular dementia, or viral infections. The protein consists of the reticulon-homology domain (RHD) that is flanked at the N- and C-termini by an intrinsically disordered protein region (IDPR), where the C terminal IDPR carries the indispensable LC3-interacting region (LIR) motif for the interaction with LC3. The RHD of RETREG1 is presumed to play a role in membrane remodeling, but the absence of a known 3D structure of this domain so far prevented researchers from gaining mechanistic insights into how the RETREG1 RHD curves membranes, and thereby facilities reticulophagy. The recent study by Bhaskara et al., which is described in this editor's corner article, used molecular dynamics (MD) simulations to create a structural model of the RETREG1 RHD. MD simulations along with in vitro liposome remodeling experiments reveal how the RHD domain acts on the ER membrane and, in concert with the C terminal IDPR, executes the function of RETREG1 in selective reticulophagy.Abbreviations: ER, endoplasmic reticulum; IDPR, intrinsically disordered protein region; LIR, LC3-interacting region; MD, molecular dynamics; RHD, reticulon-homology domain; TM, transmembrane.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Proteínas Portadoras/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo
19.
Cells ; 9(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887506

RESUMEN

Ubiquitination, the post-translational modification essential for various intracellular processes, is implicated in multiple aspects of autophagy, the major lysosome/vacuole-dependent degradation pathway. The autophagy machinery adopted the structural architecture of ubiquitin and employs two ubiquitin-like protein conjugation systems for autophagosome biogenesis. Ubiquitin chains that are attached as labels to protein aggregates or subcellular organelles confer selectivity, allowing autophagy receptors to simultaneously bind ubiquitinated cargos and autophagy-specific ubiquitin-like modifiers (Atg8-family proteins). Moreover, there is tremendous crosstalk between autophagy and the ubiquitin-proteasome system. Ubiquitination of autophagy-related proteins or regulatory components plays significant roles in the precise control of the autophagy pathway. In this review, we summarize and discuss the molecular mechanisms and functions of ubiquitin and ubiquitination, in the process and regulation of autophagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Lisosomas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/genética , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
20.
Autophagy ; 16(6): 1007-1020, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31352862

RESUMEN

Macroautophagy/autophagy is a conserved catabolic recycling pathway involving the sequestration of cytoplasmic components within double-membrane vesicles termed autophagosomes. The autophagy-related (Atg) protein Atg13 is a key member of the autophagy initiation complex. The Atg13 C terminus is an intrinsically disordered region (IDR) harboring a binding site for the vacuolar membrane protein Vac8. Recent reports suggest Atg13 acts as a hub to assemble the initiation complex, and also participates in membrane recognition. Here we show that the Atg13 C terminus directly binds to lipid membranes via electrostatic interactions between positively charged residues in Atg13 and negatively charged phospholipids as well as a hydrophobic insertion of a Phe residue. We identified 2 sets of residues in the Atg13 IDR that affect its phospholipid-binding properties; these residues overlap with the Vac8-binding domain of Atg13. Our data indicate that Atg13 binding to phospholipids and Vac8 is mutually exclusive, and both are required for efficient autophagy. ABBREVIATIONS: Atg: autophagy-related; CD: circular dichroism; Cvt: cytoplasm-to-vacuole targeting; IDR: intrinsically disordered region; ITC: isothermal calorimetry; MIM: MIT-interacting motif; MKO: multiple-knockout; PAS: phagophore assembly site; PC: phosphatidylcholine; PS: phosphatidylserine; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de la Membrana/metabolismo , Fosfolípidos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Calorimetría , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Electricidad Estática , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda