Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
PLoS Biol ; 20(5): e3001654, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617290

RESUMEN

In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF.


Asunto(s)
Pupila , Movimientos Sacádicos , Animales , Cognición , Lóbulo Frontal/fisiología , Macaca mulatta
2.
Proc Natl Acad Sci U S A ; 119(10): e2115973119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235463

RESUMEN

White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.


Asunto(s)
Axones , Nervio Óptico/patología , Remielinización , Retina/patología , Trastornos de la Visión/patología , Animales , Modelos Animales de Enfermedad , Potenciales Evocados Visuales , Macaca fascicularis , Masculino , Esclerosis Múltiple/patología , Reflejo Pupilar , Retina/diagnóstico por imagen , Retina/fisiopatología , Tomografía de Coherencia Óptica
3.
Proc Natl Acad Sci U S A ; 117(25): 14453-14463, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513717

RESUMEN

Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci. The maps could be acquired in a single-hour session with relatively few presentations of the stimuli. The spatial resolution of the technology is illustrated by mapping patterns similar to ocular dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions using fUS suggested that OD selectivity is mostly present in layer IV but with extensions into layers II/III and V. This imaging technology provides a new mesoscale approach to the mapping of brain activity at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Visual/fisiología , Vigilia/fisiología , Animales , Predominio Ocular/fisiología , Femenino , Macaca mulatta , Masculino , Estimulación Luminosa , Reproducibilidad de los Resultados , Análisis Espacio-Temporal , Ultrasonografía/métodos , Corteza Visual/diagnóstico por imagen
4.
Brain ; 144(2): 504-514, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279957

RESUMEN

Freezing of gait is a challenging sign of Parkinson's disease associated with disease severity and progression and involving the mesencephalic locomotor region. No predictive factor of freezing has been reported so far. The primary objective of this study was to identify predictors of freezing occurrence at 5 years. In addition, we tested whether functional connectivity of the mesencephalic locomotor region could explain the oculomotor factors at baseline that were predictive of freezing onset. We performed a prospective study investigating markers (parkinsonian signs, cognitive status and oculomotor recordings, with a particular focus on the antisaccade latencies) of disease progression at baseline and at 5 years. We identified two groups of patients defined by the onset of freezing at 5 years of follow-up; the 'Freezer' group was defined by the onset of freezing in the ON medication condition during follow-up (n = 17), while the 'non-Freezer' group did not (n = 8). Whole brain resting-state functional MRI was recorded at baseline to determine how antisaccade latencies were associated with connectivity of the mesencephalic locomotor region networks in patients compared to 25 age-matched healthy volunteers. Results showed that, at baseline and compared to the non-Freezer group, the Freezer group had equivalent motor or cognitive signs, but increased antisaccade latencies (P = 0.008). The 5-year course of freezing of gait was correlated with worsening antisaccade latencies (P = 0.0007). Baseline antisaccade latencies was also predictive of the freezing onset (χ2 = 0.008). Resting state connectivity of mesencephalic locomotor region networks correlated with (i) antisaccade latency differently in patients and healthy volunteers at baseline; and (ii) the further increase of antisaccade latency at 5 years. We concluded that antisaccade latency is a predictive marker of the 5-year onset of freezing of gait. Our study suggests that functional networks associated with gait and gaze control are concurrently altered during the course of the disease.


Asunto(s)
Encéfalo/fisiopatología , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/fisiopatología , Enfermedad de Parkinson/complicaciones , Movimientos Sacádicos , Anciano , Biomarcadores , Mapeo Encefálico , Tecnología de Seguimiento Ocular , Femenino , Trastornos Neurológicos de la Marcha/complicaciones , Humanos , Imagen por Resonancia Magnética , Masculino , Mesencéfalo/fisiopatología , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Sensibilidad y Especificidad
5.
Cereb Cortex ; 32(1): 216-230, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34590113

RESUMEN

Action selection refers to the decision regarding which action to perform in order to reach a desired goal, that is, the "what" component of intention. Whether the action is freely chosen or externally instructed involves different brain networks during the selection phase, but it is assumed that the way an action is selected should not influence the subsequent execution phase of the same movement. Here, we aim to test this hypothesis by investigating whether the modality of movement selection influences the brain networks involved during the execution phase of the movement. Twenty healthy volunteers performed a delayed response task in an event-related functional magnetic resonance imaging design to compare freely chosen and instructed unimanual or bimanual movements during the execution phase. Using activation analyses, we found that the pre-supplementary motor area (preSMA) and the parietal and cerebellar areas were more activated during the execution phase of freely chosen as compared to instructed movements. Connectivity analysis showed an increase of information flow between the right posterior parietal cortex and the cerebellum for freely chosen compared to instructed movements. We suggest that the parieto-cerebellar network is particularly engaged during freely chosen movement to monitor the congruence between the intentional content of our actions and their outcome.


Asunto(s)
Mapeo Encefálico , Desempeño Psicomotor , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética , Movimiento/fisiología , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología
6.
Neuroimage ; 204: 116236, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31597085

RESUMEN

BACKGROUND: Transcranial focus ultrasound applications applied under MRI-guidance benefit from unrivaled monitoring capabilities, allowing the recording of real-time anatomical information and biomarkers like the temperature rise and/or displacement induced by the acoustic radiation force. Having both of these measurements could allow for better targeting of brain structures, with improved therapy monitoring and safety. METHOD: We investigated the use of a novel MRI-pulse sequence described previously in Bour et al., (2017) to quantify both the displacement and temperature changes under various ultrasound sonication conditions and in different regions of the brain. The method was evaluated in vivo in a non-human primate under anesthesia using a single-element transducer (f = 850 kHz) in a setting that could mimic clinical applications. Acquisition was performed at 3 T on a clinical imaging system using a modified single-shot gradient echo EPI sequence integrating a bipolar motion-sensitive encoding gradient. Four slices were acquired sequentially perpendicularly or axially to the direction of the ultrasound beam with a 1-Hz update frequency and an isotropic spatial resolution of 2-mm. A total of twenty-four acquisitions were performed in three different sets of experiments. Measurement uncertainty of the sequence was investigated under different acoustic power deposition and in different regions of the brain. Acoustic simulation and thermal modeling were performed and compared to experimental data. RESULTS: The sequence simultaneously provides relevant information about the focal spot location and visualization of heating of brain structures: 1) The sequence localized the acoustic focus both along as well as perpendicular to the ultrasound direction. Tissue displacements ranged from 1 to 2 µm. 2) Thermal rise was only observed at the vicinity of the skull. Temperature increase ranged between 1 and 2 °C and was observed delayed relative the sonication due to thermal diffusion. 3) The fast frame rate imaging was able to highlight magnetic susceptibility artifacts related to breathing, for the most caudal slices. We demonstrated that respiratory triggering successfully restored the sensitivity of the method (from 0.7 µm to 0.2 µm). 4) These results were corroborated by acoustic simulations. CONCLUSIONS: The current rapid, multi-slice acquisition and real-time implementation of temperature and displacement visualization may be useful in clinical practices. It may help defining operational safety margins, improving therapy precision and efficacy. Simulations were in good agreement with experimental data and may thus be used prior treatment for procedure planning.


Asunto(s)
Temperatura Corporal/fisiología , Imagen Eco-Planar/métodos , Neuroimagen/métodos , Termometría/métodos , Terapia por Ultrasonido , Animales , Encéfalo , Simulación por Computador , Macaca mulatta
7.
Mov Disord ; 35(1): 151-160, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31571302

RESUMEN

BACKGROUND: Abnormal sensory processing, including temporal discrimination threshold, has been described in various dystonic syndromes. OBJECTIVE: To investigate visual sensory processing in DYT-SGCE and identify its structural correlates. METHODS: DYT-SGCE patients without DBS (DYT-SGCE-non-DBS) and with DBS (DYT-SGCE-DBS) were compared to healthy volunteers in three tasks: a temporal discrimination threshold, a movement orientation discrimination, and movement speed discrimination. Response times attributed to accumulation of sensory visual information were computationally modelized, with µ parameter indicating sensory mean growth rate. We also identified the structural correlates of behavioral performance for temporal discrimination threshold. RESULTS: Twenty-four DYT-SGCE-non-DBS, 13 DYT-SGCE-DBS, and 25 healthy volunteers were included in the study. In DYT-SGCE-DBS, the discrimination threshold was higher in the temporal discrimination threshold (P = 0.024), with no difference among the groups in other tasks. The sensory mean growth rate (µ) was lower in DYT-SGCE in all three tasks (P < 0.01), reflecting a slower rate of sensory accumulation for the visual information in these patients independent of DBS. Structural imaging analysis showed a thicker left primary visual cortex (P = 0.001) in DYT-SGCE-non-DBS compared to healthy volunteers, which also correlated with lower µ in temporal discrimination threshold (P = 0.029). In DYT-SGCE-non-DBS, myoclonus severity also correlated with a lower µ in the temporal discrimination threshold task (P = 0.048) and with thicker V1 on the left (P = 0.022). CONCLUSION: In DYT-SGCE, we showed an alteration of the visual sensory processing in the temporal discrimination threshold that correlated with myoclonus severity and structural changes in the primary visual cortex. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Distónicos/fisiopatología , Trastornos del Movimiento/fisiopatología , Movimiento/fisiología , Percepción Visual/fisiología , Adulto , Trastornos Distónicos/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/patología , Mioclonía/patología , Mioclonía/fisiopatología
8.
Biophys J ; 110(1): 234-46, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26745426

RESUMEN

Determining the electrical properties of the extracellular space around neurons is important for understanding the genesis of extracellular potentials, as well as for localizing neuronal activity from extracellular recordings. However, the exact nature of these extracellular properties is still uncertain. Here, we introduce a method to measure the impedance of the tissue, one that preserves the intact cell-medium interface using whole-cell patch-clamp recordings in vivo and in vitro. We find that neural tissue has marked non-ohmic and frequency-filtering properties, which are not consistent with a resistive (ohmic) medium, as often assumed. The amplitude and phase profiles of the measured impedance are consistent with the contribution of ionic diffusion. We also show that the impact of such frequency-filtering properties is possibly important on the genesis of local field potentials, as well as on the cable properties of neurons. These results show non-ohmic properties of the extracellular medium around neurons, and suggest that source estimation methods, as well as the cable properties of neurons, which all assume ohmic extracellular medium, may need to be reevaluated.


Asunto(s)
Espacio Extracelular/metabolismo , Espacio Intracelular/metabolismo , Neuronas/citología , Animales , Encéfalo/citología , Impedancia Eléctrica , Ratones , Modelos Neurológicos , Ratas
9.
J Neurophysiol ; 115(4): 2214-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26864771

RESUMEN

The presence of a respiratory-related cortical activity during tidal breathing is abnormal and a hallmark of respiratory difficulties, but its detection requires superior discrimination and temporal resolution. The aim of this study was to validate a computational method using EEG covariance (or connectivity) matrices to detect a change in brain activity related to breathing. In 17 healthy subjects, EEG was recorded during resting unloaded breathing (RB), voluntary sniffs, and breathing against an inspiratory threshold load (ITL). EEG were analyzed by the specially developed covariance-based classifier, event-related potentials, and time-frequency (T-F) distributions. Nine subjects repeated the protocol. The classifier could accurately detect ITL and sniffs compared with the reference period of RB. For ITL, EEG-based detection was superior to airflow-based detection (P < 0.05). A coincident improvement in EEG-airflow correlation in ITL compared with RB (P < 0.05) confirmed that EEG detection relates to breathing. Premotor potential incidence was significantly higher before inspiration in sniffs and ITL compared with RB (P < 0.05), but T-F distributions revealed a significant difference between sniffs and RB only (P < 0.05). Intraclass correlation values ranged from poor (-0.2) to excellent (1.0). Thus, as for conventional event-related potential analysis, the covariance-based classifier can accurately predict a change in brain state related to a change in respiratory state, and given its capacity for near "real-time" detection, it is suitable to monitor the respiratory state in respiratory and critically ill patients in the development of a brain-ventilator interface.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Evocados Motores , Respiración , Adulto , Femenino , Humanos , Masculino , Tiempo de Reacción
10.
Exp Brain Res ; 234(7): 1957-1966, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26928431

RESUMEN

The time to initiate a movement can, even implicitly, be influenced by the environment. All primates, including humans, respond faster and with greater accuracy to stimuli that are brighter, louder or associated with larger reward, than to neutral stimuli. Whether this environment also modulates the executive functions which allow ongoing actions to be suppressed remains an issue of debate. In this study, we investigated the implicit learning of spatial selectivity of movement inhibition in humans and macaque monkeys performing a saccade-countermanding task. The occurrence of stop trials, in which subjects were visually instructed to cancel a prepared movement, was manipulated according to the target location. One visual target was associated with higher probability of stop signal appearance (e.g., 80 %), while the second target was associated with low fraction of stop (e.g., 20 %). The absolute occurrence of stop trials across the two targets (50 %) remains constant. The results show that human and macaque monkeys can selectively adapt their behaviors according to the implicit probability of stopping. Behavioral adjustments were larger when targets were in different hemifields and for larger distances between targets. Reduced selective inhibitory behaviors were observed when 15° of visual angle separated the targets, and this effect vanished when targets were separated by only 2°. Overall, our study shows that both response and inhibition times can be modulated by the relative spatial occurrence of stop signals. We speculate that beyond the particular effect we observed in the context of the saccade paradigm, selective motor execution may imply a disinhibitory mechanism that modulates the motor pathways associated with the fronto-median cortex and basal ganglia circuits.


Asunto(s)
Conducta Animal/fisiología , Función Ejecutiva/fisiología , Inhibición Psicológica , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Adulto , Animales , Femenino , Humanos , Macaca mulatta , Masculino , Movimientos Sacádicos
12.
J Neurosci ; 33(7): 2821-7, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407941

RESUMEN

Interpretations of local field potentials (LFPs) are typically shaped on an assumption that the brain is a homogenous conductive milieu. However, microscale inhomogeneities including cell bodies, dendritic structures, axonal fiber bundles and blood vessels are unequivocally present and have different conductivities and permittivities than brain extracellular fluid. To determine the extent to which these obstructions affect electrical signal propagation on a microscale, we delivered electrical stimuli intracellularly to individual cells while simultaneously recording the extracellular potentials at different locations in a rat brain slice. As compared with relatively unobstructed paths, signals were attenuated across frequencies when fiber bundles were in between the stimulated cell and the extracellular electrode. Across group of cell bodies, signals were attenuated at low frequencies, but facilitated at high frequencies. These results show that LFPs do not reflect a democratic representation of neuronal contributions, as certain neurons may contribute to the LFP more than others based on the local extracellular environment surrounding them.


Asunto(s)
Encéfalo/fisiología , Fenómenos Electrofisiológicos/fisiología , Animales , Axones/fisiología , Vasos Sanguíneos/fisiología , Encéfalo/citología , Dendritas/fisiología , Estimulación Eléctrica , Espacio Extracelular/fisiología , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Potenciales de la Membrana/fisiología , Fibras Nerviosas/fisiología , Neuroglía/fisiología , Técnicas de Placa-Clamp , Ratas
13.
J Neurophysiol ; 112(8): 1925-35, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057142

RESUMEN

It is known that sensory deprivation, including postnatal whisker trimming, can lead to severe deficits in the firing rate properties of cortical neurons. Recent results indicate that development of synchronous discharge among cortical neurons is also activity influenced, and that correlated discharge is significantly impaired following loss of bilateral sensory input in rats. Here we investigate whether unilateral whisker trimming (unilateral deprivation or UD) after birth interferes in the same way with the development of synchronous discharge in cortex. We measured the coincidence of spikes among pairs of neurons recorded under urethane anesthesia in one whisker barrel field deprived by trimming all contralateral whiskers for 60 days after birth (UD), and in untrimmed controls (CON). In the septal columns around barrels, UD significantly increased the coincident discharge among cortical neurons compared with CON, most notably in layers II/III. In contrast, synchronous discharge was normal between layer IV UD barrel neurons: i.e., not different from CON. Thus, while bilateral whisker deprivation (BD) produced a global deficit in the development of synchrony in layer IV, UD did not block the development of synchrony between neurons in layer IV barrels and increased synchrony within septal circuits. We conclude that changes in synchronous discharge after UD are unexpectedly different from those recorded after BD, and we speculate that this effect may be due to the driven activity from active commissural inputs arising from the contralateral hemisphere that received normal activity levels during postnatal development.


Asunto(s)
Neuronas/fisiología , Privación Sensorial/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Tacto/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Estimulación Física , Ratas , Ratas Long-Evans , Corteza Somatosensorial/crecimiento & desarrollo , Vibrisas/fisiología
14.
Sci Rep ; 14(1): 2420, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286801

RESUMEN

Equiluminant stimuli help assess the integrity of colour perception and the relationship of colour to other visual features. As a result of individual variation, it is necessary to calibrate experimental visual stimuli to suit each individual's unique equiluminant ratio. Most traditional methods rely on training observers to report their subjective equiluminance point. Such paradigms cannot easily be implemented on pre-verbal or non-verbal observers. Here, we present a novel Pupil Frequency-Tagging Method (PFTM) for detecting a participant's unique equiluminance point without verbal instruction and with minimal training. PFTM analyses reflexive pupil oscillations induced by slow (< 2 Hz) temporal alternations between coloured stimuli. Two equiluminant stimuli will induce a similar pupil dilation response regardless of colour; therefore, an observer's equiluminant point can be identified as the luminance ratio between two colours for which the oscillatory amplitude of the pupil at the tagged frequency is minimal. We compared pupillometry-based equiluminance ratios to those obtained with two established techniques in humans: minimum flicker and minimum motion. In addition, we estimated the equiluminance point in non-human primates, demonstrating that this new technique can be successfully employed in non-verbal subjects.


Asunto(s)
Percepción de Color , Sensibilidad de Contraste , Animales , Humanos , Percepción de Color/fisiología , Pupila , Examen Físico , Factores de Tiempo , Estimulación Luminosa
15.
Neurology ; 103(5): e209749, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39133883

RESUMEN

BACKGROUND AND OBJECTIVES: Brain MRI abnormalities and increases in neurofilament light chain (NfL) have mostly been observed in cross-sectional studies before ataxia onset in polyglutamine spinocerebellar ataxias. Our study aimed to identify longitudinal changes in biological, clinical, and/or imaging biomarkers in spinocerebellar ataxia (SCA) 2 and SCA7 carriers over 1 year. METHODS: We studied SCA2 and SCA7 carriers and controls (expansion-negative relatives) at the Paris Brain Institute. Inclusion criteria included Scale for the Assessment and Rating of Ataxia (SARA) scores between 0 and 15. Assessments at baseline, 6 months, and 12 months comprised neurologic, quality of life, orofacial motor, neuropsychological, and ophthalmologic examinations, along with gait and oculomotor recordings, brain MRI, CSF, and blood sampling. The primary outcome was the longitudinal change in these assessments over 1 year. RESULTS: We included 15 SCA2 carriers, 15 SCA7 carriers, and 10 controls between May 2020 and April 2021. At baseline, the ages were similar (41 [37, 46] for SCA2, 38 [28.5, 39.8] for SCA7, and 39.5 [31, 54.5] for controls, p = 0.78), as well the sex (p = 0.61); SARA scores were low but different (4 [1.25, 6.5] in SCA2, 2 [0, 11.5] in SCA7, and 0 in controls, p < 0.01). Pons and medulla volumes were smaller in SCAs (p < 0.05) and cerebellum volume only in SCA2 (p = 0.01). Plasma NfL levels were higher in SCA participants (SCA2: 14.2 pg/mL [11.52, 15.89], SCA7: 15.53 [13.27, 23.23]) than in controls (4.88 [3.56, 6.17], p < 0.001). After 1-year follow-up, in SCA2, there was significant pons (-144 ± 60 mm3) and cerebellum (-1,508 ± 580 mm3) volume loss and a worsening of gait assessment; in SCA7, SARA score significantly increased (+1.3 ± 0.4) and outer retinal nuclear layer thickness decreased (-15.4 ± 1.6 µm); for both SCA groups, the orofacial motor assessment significantly worsened. For preataxic and early ataxic carriers, the strongest longitudinal deterioration on outcome measures was orofacial motility in SCA2 and retinal thickness in SCA7. DISCUSSION: Despite the limitation of the small sample size, we detected annual changes in preataxic and early ataxic SCA individuals across brain MRI imaging, clinical scores, gait parameters, and retinal thickness. These parameters could serve as potential end points for future therapeutic trials in the preataxic phase. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov NCT04288128.


Asunto(s)
Biomarcadores , Imagen por Resonancia Magnética , Proteínas de Neurofilamentos , Ataxias Espinocerebelosas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Adulto , Biomarcadores/sangre , Estudios Longitudinales , Proteínas de Neurofilamentos/sangre , Heterocigoto , Ataxina-7/genética , Ataxina-2/genética , Progresión de la Enfermedad , Encéfalo/diagnóstico por imagen
16.
J Transl Med ; 11: 125, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23694702

RESUMEN

BACKGROUND: When patients with ocular motor deficits come to the clinic, in numerous situations it is hard to relate their behavior to one or several deficient neural structures. We sought to demonstrate that neuromimetic models of the ocular motor brainstem could be used to test assumptions of the neural deficits linked to a patient's behavior. METHODS: Eye movements of a patient with unexplained neurological pathology were recorded. We analyzed the patient's behavior in terms of a neuromimetic saccadic model of the ocular motor brainstem to formulate a pathophysiological hypothesis. RESULTS: Our patient exhibited unusual ocular motor disorders including increased saccadic peak velocities (up to ≈1000 deg/s), dynamic saccadic overshoot, left-right asymmetrical post-saccadic drift and saccadic oscillations. We show that our model accurately reproduced the observed disorders allowing us to hypothesize that those disorders originated from a deficit in the cerebellum. CONCLUSION: Our study suggests that neuromimetic models could be a good complement to traditional clinical tools. Our behavioral analyses combined with the model simulations localized four different features of abnormal eye movements to cerebellar dysfunction. Importantly, this assumption is consistent with clinical symptoms.


Asunto(s)
Movimientos Oculares , Movimientos Sacádicos/fisiología , Adolescente , Tronco Encefálico/fisiología , Cerebelo/fisiología , Simulación por Computador , Ojo/fisiopatología , Femenino , Humanos , Discapacidades para el Aprendizaje/complicaciones , Modelos Neurológicos , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Oscilometría/métodos , Análisis de Regresión , Visión Ocular/fisiología
18.
Mem Cognit ; 41(5): 698-715, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23371773

RESUMEN

Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers' eye movements while they remembered a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval should impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy, even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations.


Asunto(s)
Atención/fisiología , Movimientos Oculares/fisiología , Memoria a Corto Plazo/fisiología , Percepción Espacial/fisiología , Adolescente , Adulto , Humanos , Adulto Joven
19.
Neuropsychologia ; 188: 108632, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385373

RESUMEN

Free will has been at the heart of philosophical and scientific discussions for many years. However, recent advances in neuroscience have been perceived as a threat to the commonsense notion of free will as they challenge two core requirements for actions to be free. The first is the notion of determinism and free will, i.e., decisions and actions must not be entirely determined by antecedent causes. The second is the notion of mental causation, i.e., our mental state must have causal effects in the physical world, in other words, actions are caused by conscious intention. We present the classical philosophical positions related to determinism and mental causation, and discuss how neuroscience could shed a new light on the philosophical debate based on recent experimental findings. Overall, we conclude that the current evidence is insufficient to undermine free will.


Asunto(s)
Neurociencias , Autonomía Personal , Humanos , Estado de Conciencia , Intención
20.
Sci Data ; 10(1): 224, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081025

RESUMEN

Although very well adapted to brain study, Magnetic Resonance Imaging (MRI) remains limited by the facilities and capabilities required to acquire data, especially for non-human primates. Addressing the data gaps resulting from these limitations requires making data more accessible and open. In contempt of the regular use of Saimiri sciureus in neuroscience research, in vivo diffusion has yet to be openly available for this species. Here we built and made openly available a unique new resource consisting of a high-resolution, multishell diffusion-weighted dataset in the anesthetized Saimiri sciureus. The data were acquired on 11 individuals with an 11.7 T MRI scanner (isotropic resolution of 400 µm3). This paper presents an overview of our dataset and illustrates some of its possible use through example analyses. To assess the quality of our data, we analyzed long-range connections (whole-brain tractography), microstructure (Neurite Orientation Dispersion and Density Imaging), and axon diameter in the corpus callosum (ActiveAx). Constituting an essential new resource for primate evolution studies, all data are openly available.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Primates , Saimiri
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda