Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Nature ; 550(7674): 67-73, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953884

RESUMEN

Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.


Asunto(s)
Desarrollo Embrionario/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Blastocisto/metabolismo , Sistemas CRISPR-Cas/genética , Linaje de la Célula , Ectodermo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/deficiencia , Especificidad por Sustrato , Cigoto/metabolismo
5.
J Theor Biol ; 310: 14-20, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22728673

RESUMEN

Recent advances have highlighted the central role of DNA methylation in leukemogenesis and have led to clinical trials of epigenetic therapy, notably hypomethylating agents, in myelodysplasia and acute myeloid leukemia. However, despite these advances, our understanding of the dynamic regulation of the methylome remains poor. We have attempted to address this shortcoming by producing a dynamic, six-compartmental model of DNA methylation levels based on the activity of the Dnmt methyltransferase proteins. In addition, the model incorporates the recently discovered Tet family proteins which enzymatically convert methylcytosine to hydroxymethylcytosine. A set of first order, partial differential equations comprise the model and were solved via numerical integration. The model is able to predict the relative abundances of unmethylated, hemimethylated, fully methylated, and hydroxymethylated CpG dyads in the DNA of cells with fully functional Dnmt and Tet proteins. In addition, the model accurately predicts the experimentally measured changes in these abundances with disruption of Dnmt function. Furthermore, the model reveals the mechanism whereby CpG islands are maintained in a hypomethylated state via local modulation of Dnmt and Tet activities without any requirement for active demethylation. We conclude that this model provides an accurate depiction of the major epigenetic processes involving modification of DNA.


Asunto(s)
Metilación de ADN/genética , Neoplasias Hematológicas/genética , Modelos Genéticos , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Genoma Humano/genética , Neoplasias Hematológicas/enzimología , Heterocigoto , Homocigoto , Humanos
6.
Science ; 357(6354): 932-935, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28818972

RESUMEN

Having the correct number of chromosomes is vital for normal development and health. Sex chromosome trisomy affects 0.1% of the human population and is associated with infertility. We show that during reprogramming to induced pluripotent stem cells (iPSCs), fibroblasts from sterile trisomic XXY and XYY mice lose the extra sex chromosome through a phenomenon we term trisomy-biased chromosome loss (TCL). Resulting euploid XY iPSCs can be differentiated into the male germ cell lineage and functional sperm that can be used in intracytoplasmic sperm injection to produce chromosomally normal, fertile offspring. Sex chromosome loss is comparatively infrequent during mouse XX and XY iPSC generation. TCL also applies to other chromosomes, generating euploid iPSCs from cells of a Down syndrome mouse model. It can also create euploid iPSCs from human trisomic patient fibroblasts. The findings have relevance to overcoming infertility and other trisomic phenotypes.


Asunto(s)
Técnicas de Reprogramación Celular , Fertilidad/genética , Células Madre Pluripotentes Inducidas/fisiología , Infertilidad/terapia , Síndrome de Klinefelter/terapia , Trastornos de los Cromosomas Sexuales/terapia , Cromosomas Sexuales/genética , Trisomía/genética , Animales , Reprogramación Celular , Modelos Animales de Enfermedad , Síndrome de Down/genética , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Infertilidad/genética , Síndrome de Klinefelter/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos de los Cromosomas Sexuales/genética , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/fisiología , Cariotipo XYY/genética
7.
Cell Stem Cell ; 18(2): 262-75, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26686465

RESUMEN

In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease.


Asunto(s)
Cromosomas Humanos/genética , Células Madre Pluripotentes/metabolismo , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , Enfermedad/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Elementos Aisladores/genética , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Proteínas Represoras , Factores de Transcripción/metabolismo , Cohesinas
8.
Dev Cell ; 29(1): 102-11, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735881

RESUMEN

Tet enzymes (Tet1/2/3) convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and are dynamically expressed during development. Whereas loss of individual Tet enzymes or combined deficiency of Tet1/2 allows for embryogenesis, the effect of complete loss of Tet activity and 5hmC marks in development is not established. We have generated Tet1/2/3 triple-knockout (TKO) mouse embryonic stem cells (ESCs) and examined their developmental potential. Combined deficiency of all three Tets depleted 5hmC and impaired ESC differentiation, as seen in poorly differentiated TKO embryoid bodies (EBs) and teratomas. Consistent with impaired differentiation, TKO ESCs contributed poorly to chimeric embryos, a defect rescued by Tet1 reexpression, and could not support embryonic development. Global gene-expression and methylome analyses of TKO EBs revealed promoter hypermethylation and deregulation of genes implicated in embryonic development and differentiation. These findings suggest a requirement for Tet- and 5hmC-mediated DNA demethylation in proper regulation of gene expression during ESC differentiation and development.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Cuerpos Embrioides/citología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Metilación de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas , Cuerpos Embrioides/enzimología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Proto-Oncogénicas/genética
9.
Cell Stem Cell ; 15(4): 471-487, 2014 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-25090446

RESUMEN

Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, "naive" state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Supervivencia Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Transgenes
10.
Dev Cell ; 24(3): 310-23, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23352810

RESUMEN

Tet enzymes (Tet1/2/3) convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in various embryonic and adult tissues. Mice mutant for either Tet1 or Tet2 are viable, raising the question of whether these enzymes have overlapping roles in development. Here we have generated Tet1 and Tet2 double-knockout (DKO) embryonic stem cells (ESCs) and mice. DKO ESCs remained pluripotent but were depleted of 5hmC and caused developmental defects in chimeric embryos. While a fraction of double-mutant embryos exhibited midgestation abnormalities with perinatal lethality, viable and overtly normal Tet1/Tet2-deficient mice were also obtained. DKO mice had reduced 5hmC and increased 5mC levels and abnormal methylation at various imprinted loci. Nevertheless, animals of both sexes were fertile, with females having smaller ovaries and reduced fertility. Our data show that loss of both enzymes is compatible with development but promotes hypermethylation and compromises imprinting. The data also suggest a significant contribution of Tet3 to hydroxylation of 5mC during development.


Asunto(s)
Proteínas de Unión al ADN , Desarrollo Embrionario , Epigénesis Genética , Proteínas Proto-Oncogénicas , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Fertilidad/genética , Fertilidad/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Impresión Genómica , Humanos , Hidroxilación , Masculino , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
11.
Cell Stem Cell ; 9(2): 166-75, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816367

RESUMEN

The Tet family of enzymes (Tet1/2/3) converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Mouse embryonic stem cells (mESCs) highly express Tet1 and have an elevated level of 5hmC. Tet1 has been implicated in ESC maintenance and lineage specification in vitro but its precise function in development is not well defined. To establish the role of Tet1 in pluripotency and development, we have generated Tet1 mutant mESCs and mice. Tet1(-/-) ESCs have reduced levels of 5hmC and subtle changes in global gene expression, and are pluripotent and support development of live-born mice in tetraploid complementation assay, but display skewed differentiation toward trophectoderm in vitro. Tet1 mutant mice are viable, fertile, and grossly normal, though some mutant mice have a slightly smaller body size at birth. Our data suggest that Tet1 loss leading to a partial reduction in 5hmC levels does not affect pluripotency in ESCs and is compatible with embryonic and postnatal development.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Animales Recién Nacidos , Tamaño Corporal , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Ratones , Ratones Endogámicos C57BL , Células Madre Pluripotentes/citología , Tetraploidía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda