Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Cell ; 76(1): 177-190.e5, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31421981

RESUMEN

The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The auxin response factor (ARF) transcription factor family regulates auxin-responsive gene expression and exhibits nuclear localization in regions of high auxin responsiveness. Here we show that the ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. We found that the intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, providing a mechanism for cellular competence for auxin signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas Intrínsecamente Desordenadas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética
2.
Dev Dyn ; 249(4): 483-495, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31774605

RESUMEN

The plant hormone auxin acts as a signaling molecule to regulate a vast number of developmental responses throughout all stages of plant growth. Tight control and coordination of auxin signaling is required for the generation of specific auxin-response outputs. The nuclear auxin signaling pathway controls auxin-responsive gene transcription through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX pathway. Recent work has uncovered important details into how regulation of auxin signaling components can generate unique and specific responses to determine auxin outputs. In this review, we discuss what is known about the core auxin signaling components and explore mechanisms important for regulating auxin response specificity.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Transducción de Señal/fisiología
3.
Nat Commun ; 13(1): 4015, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817767

RESUMEN

Auxin critically regulates plant growth and development. Auxin-driven transcriptional responses are mediated through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARF protein condensation attenuates ARF activity, resulting in dramatic shifts in the auxin transcriptional landscape. Here, we perform a forward genetics screen for ARF hypercondensation, identifying an F-box protein, which we named AUXIN RESPONSE FACTOR F-BOX1 (AFF1). Functional characterization of SCFAFF1 revealed that this E3 ubiquitin ligase directly interacts with ARF19 and ARF7 to regulate their accumulation, condensation, and nucleo-cytoplasmic partitioning. Mutants defective in AFF1 display attenuated auxin responsiveness, and developmental defects, suggesting that SCFAFF1 -mediated regulation of ARF protein drives aspects of auxin response and plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
4.
Mol Biochem Parasitol ; 238: 111291, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479776

RESUMEN

In free-living and parasitic nematodes, the methylation of phosphoethanolamine to phosphocholine provides a key metabolite to sustain phospholipid biosynthesis for growth and development. Because the phosphoethanolamine methyltransferases (PMT) of nematodes are essential for normal growth and development, these enzymes are potential targets of inhibitor design. The pine wilt nematode (Bursaphelenchus xylophilus) causes extensive damage to trees used for lumber and paper in Asia. As a first step toward testing BxPMT1 as a potential nematicide target, we determined the 2.05 Å resolution x-ray crystal structure of the enzyme as a dead-end complex with phosphoethanolamine and S-adenosylhomocysteine. The three-dimensional structure of BxPMT1 served as a template for site-directed mutagenesis to probe the contribution of active site residues to catalysis and phosphoethanolamine binding using steady-state kinetic analysis. Biochemical analysis of the mutants identifies key residues on the ß1d-α6 loop (W123F, M126I, and Y127F) and ß1e-α7 loop (S155A, S160A, H170A, T178V, and Y180F) that form the phosphobase binding site and suggest that Tyr127 facilitates the methylation reaction in BxPMT1.


Asunto(s)
Etanolaminas/química , Proteínas del Helminto/química , Metiltransferasas/química , Nematodos/enzimología , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Cinética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Nematodos/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
5.
Dev Cell ; 50(5): 599-609.e4, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31327740

RESUMEN

Developmental processes that control root system architecture are critical for soil exploration by plants, allowing for uptake of water and nutrients. Conversion of the auxin precursor indole-3-butyric acid (IBA) to active auxin (indole-3-acetic acid; IAA) modulates lateral root formation. However, mechanisms governing IBA-to-IAA conversion have yet to be elucidated. We identified TRANSPORTER OF IBA1 (TOB1) as a vacuolar IBA transporter that limits lateral root formation. Moreover, TOB1, which is transcriptionally regulated by the phytohormone cytokinin, is necessary for the ability of cytokinin to exert inhibitory effects on lateral root production. The increased production of lateral roots in tob1 mutants, TOB1 transport of IBA into the vacuole, and cytokinin-regulated TOB1 expression provide a mechanism linking cytokinin signaling and IBA contribution to the auxin pool to tune root system architecture.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis , Membranas Intracelulares/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Vacuolas/metabolismo
6.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-26918184

RESUMEN

As a prominent regulator of plant growth and development, the hormone auxin plays an essential role in controlling cell division and expansion. Auxin-responsive gene transcription is mediated through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway. Roles for TIR1/AFB pathway components in auxin response are understood best, but additional factors implicated in auxin responses require more study. The function of these factors, including S-Phase Kinase-Associated Protein 2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained largely obscure. Recent advances have begun to clarify roles for these factors in auxin response while also raising additional questions to be answered.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda