RESUMEN
PURPOSE: This study aimed to evaluate the hypoglycemic effect, antioxidant, α-glucosidase and lipase inhibitory activity, and the cytotoxicity of the Cassia grandis nanodispersion (CgND). METHODS: The hypoglycemic effect was evaluated in alloxan-induced diabetic mice. The particle size, polydispersion index, ζ-potential, and conductivity, as well as the drug-loaded content, were monitored in shelf-live, along a year. The delivery profile was evaluated in simulated intestinal fluids at pH 6.5 and 7.4. The antioxidant effect was evaluated as DPPH and ABTS inhibition. The murine α-glucosidase inhibitory activity and the lipase-inhibitory effect were evaluated in vitro. Cytotoxicity was evaluated by the Alamar blue test. RESULTS: CgND remained stable for a year in shelf conditions. The hypoglycemic effect in a dose of 10â¯mg/kg was not statistically different from glibenclamide 25â¯mg/kg. Nanoparticles released 100% of extract in 120â¯min at pH 6.5 and 7.4. Nanodispersion exhibited a potent α-glucosidase and lipase-inhibitory effect with IC50 of 3.96 and 0.58⯵g/mL, respectively. A strong antioxidant activity against DPPH (IC50 0.65⯵g/mL) and ABTS (0.48⯵g/mL) was also observed. The hypoglycemic effect could occur, at least in part, via antioxidant and α-glucosidase inhibition. CgND is non-cytotoxic in MRC-5 line cell. This nanodispersion is a promising nanotechnological product that could be used in pharmaceuticals for the treatment of Type II diabetes and related complications as obesity.
RESUMEN
Zebrafish is an excellent model organism for studying tissue alterations caused by Bothrops alternatus venom (BAV) and for screening new anti-venom drugs. To study tissue alterations following exposure to BAV and the roles that glucocorticoids play in these tissue reactions, zebrafish were randomly divided into five groups: the free injection control group (FIC), the phosphate-buffered saline injection control group (PIC), the venom injected group (VI), the group treated with dexamethasone 1 h before venom injection (D1hBVI) and the group treated with dexamethasone 1 h after venom injection (D1hAVI). The concentration of BAV injected was 0.13 mg/mL and each fish received an injection of 20 µL. Body weight measurements and histopathological characteristics of the gills, kidneys, liver, and intestine were determined. Histopathological analyses showed necrosis, inflammation and weight gain in animals that received BAV. The histological alteration indices of the gills, liver, kidneys, and intestines were statistically higher in the animal groups treated with BAV. These alteration indices were lower in the D1hBVI and D1hAVI groups compared to the group treated with BAV alone. The D1hBVI group is presented with minor alterations. A significant difference in the histological alterations index was observed in the intestinal tissue of the FIC group compared to the PIC group. Cumulatively, zebrafish may serve as a useful biomarker for alterations induced by BAV. Interestingly, dexamethasone reduced the damage caused by BAV in the organs studied, which suggests that zebrafish might be useful for screening new drugs that can mitigate tissue damage caused by snakebites.
Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos/administración & dosificación , Pez Cebra/metabolismo , Animales , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Dexametasona/farmacología , Glucocorticoides/farmacología , Inflamación/metabolismo , Masculino , Modelos AnimalesRESUMEN
Purpose: Loratadine is used as antihistaminic without side effects in nervous systems. This drug is a weak base and it is absorbed from the intestine. The nitrogen of the pyridine ring is protonated in the stomach affecting the oral bioavailability. The aim of this paper was obtaining, characterize and evaluate the release profiles and the stability of a gastroresistant loratadine nanosuspension. Methods: The nanosuspension was prepared by the solvent displacement evaporation method, using three different polymers (Eudragit® L 100 55, Kollicoat® MAE 100P and PEG 4000) and Polysorbate 80. Dynamic Light Scattering was used for evaluating the particle size (PS), zeta potential, and conductivity of the nanosuspension. Loratadine release profiles were evaluated in simulated gastrointestinal fluids. The shelf and accelerated stability were assessed during three months. Results: Nanosuspension particle size was 45.94 ± 0.50 nm, with a low polydispersion index (PdI, 0.300). Kollicoat® MAE 100P produced a hard and flexible coating layer. In simulated intestinal fluids, the 100 percent of loratadine was released in 40 min, while in simulated stomach fluids the release was lesser than 5%. Nanosuspension presented a good physicochemical stability showing a reduction in PS and PdI after three months (43.29 ± 0.16 and 0.250; respectively). Conclusions: A promissory loratadine nanosuspension for loratadine intestinal delivery was obtained, by using a low energy method, which is an advantage for a possible scale up for practical purpose.
RESUMEN
This study describes the synthesis and characterization of chlorambucil (CLB)-functionalized mesoporous silica nanoparticles (MSNs) for potential application in cancer therapy. The nanoparticles were designed with a diameter between 20 and 50 nm to optimize cellular uptake and avoid rapid clearance from the bloodstream. The synthesis method involved modifying a previously reported technique to reduce particle size. Successful functionalization with CLB was confirmed through various techniques, including Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The cytotoxicity of the CLB-functionalized nanoparticles (MSN@NH2-CLB) was evaluated against human lung adenocarcinoma cells (A549) and colon carcinoma cells (CT26WT). The results suggest significantly higher cytotoxicity of MSN@NH2-CLB compared to unbound CLB, with improved selectivity towards cancer cells over normal cells. This suggests that MSN@NH2-CLB holds promise as a drug delivery system for targeted cancer therapy.
RESUMEN
The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26â¯mg/g) and oleic acid as the main unsaturated fatty acid (180.06â¯mg/g). The Acurí oil-loaded nanocapsules showed a size of 237â¯nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75â¯mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40â¯minutes). Nanocapsules at a dose of 10â¯mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09⯵g/mL, SI=119.61) and kidney tumor cells (IC50 3.03⯵g/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000â¯mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.
Asunto(s)
Antiinflamatorios , Nanocápsulas , Aceites de Plantas , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/administración & dosificación , Aceites de Plantas/farmacología , Masculino , Humanos , Ratas , Ratas Wistar , Administración Oral , Línea Celular TumoralRESUMEN
Attalea phalerata Martius ex Spreng is a palm tree that is widely distributed in the Central-West region of Brazil. In this study, we investigated whether the oil-loaded nanocapsules of A. phalerata (APON) have acute and long-lasting antihypertensive effects in male spontaneously hypertensive rats (SHR), as well as explored the underlying molecular mechanisms. APON was prepared using the interfacial polymer deposition method. The particle size, polydispersity index, and zeta potential were investigated using dynamic and electrophoretic light scattering. The antihypertensive effects of APON (administered at doses of 1, 3, and 10 mg/kg) were evaluated after acute intraduodenal administration and after 7 days of oral treatment. To investigate the molecular pathways involved, we used pharmacological antagonists and inhibitors that target prostaglandin/cyclic adenosine monophosphate, nitric oxide/cyclic guanosine monophosphate, and potassium channels. Both acute and prolonged administration of APON (at doses of 3 and 10 mg/kg) resulted in a significant reduction in systolic, diastolic, and mean arterial pressure. Prior treatment with a non-selective nitric oxide synthase inhibitor (Nω-nitro-L-arginine methyl ester), guanylyl cyclase inhibitor (methylene blue), or non-selective calcium-sensitive K+ channel blocker (tetraethylammonium) abolished the antihypertensive effects of APON. Our study showed that A. phalerata oil-loaded nanocapsules have a significant antihypertensive effect in SHR after both short-term and long-term (7-day) use. This effect seems to rely on the vascular endothelium function and involves the NO-cGMP-K+ channel pathway. This research suggests a new direction for future studies to definitively prove the therapeutic benefits of APON in treating cardiovascular disease.
RESUMEN
INTRODUCTION: Amyrins are triterpenes that have attractive pharmacological potential; however, their low water solubility and erratic stomach absorption hinders their use as a drug. The aim of this paper was to develop a novel α-amyrin-loaded nanocapsule for intestinal delivery and evaluate, preliminarily, its cytotoxic ability against leukemic cells. MATERIAL AND METHODS: Five nanocapsule formulations were designed by the solvent displacement-evaporation method. Poly-ε-caprolactone, Eudragit® E100, and Kollicoat® Mae 100 P were used as film-former materials. Particle size, polydispersity index (PdI), zeta potential, and the pH of all formulations were measured. The cytotoxic potential of the nanocapsules was evaluated in vitro using different leukemic lineages RESULTS: Nanocapsules coated with Kollicoat® Mae 100 P presented the smallest particle size (130 nm), the lowest zeta-potential (-38 mV), and the narrowest size distribution (PdI = 0.100). The entrapment efficiency was 65.47%, while the loading capacity was 2.40%. Nanocapsules release 100% of α-amyrin in 40 min (pH 7.4), by using a possible mechanism of swelling-diffusion. The formulation showed excellent on-shelf physicochemical stability during one year. Additionally, nanocapsules produced a selective cytotoxic effect on a human leukemia lineage Kasumi-1, an acute myeloid leukemia cell line, and produced cell death by apoptosis CONCLUSION: α-amyrin-loaded nanocapsules appear to be a promising nanoformulation that could be used against leukemia.
Asunto(s)
Leucemia/tratamiento farmacológico , Nanocápsulas/química , Triterpenos Pentacíclicos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caproatos/farmacología , Línea Celular Tumoral , Células Cultivadas , Humanos , Células Jurkat , Células K562 , Lactonas/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Tamaño de la Partícula , Ácidos Polimetacrílicos/químicaRESUMEN
In this study, the essential oil (EO) from leaves of Croton linearis Jacq was extracted and characterized by GC/MS. The EO hydrophilic-lipophilic balance required (rHLB) for nanoemulsion (NE) development was determined by the Griffin' method. For evaluating the larvicidal effect against Aedes aegypti, the preparation process of NE was optimized, using a central composite design. It was also evaluated the possible toxic effect of NE in nontarget species. The leaves of C. linearis contain 1.50% of EO, enclosing 61 volatile compounds, mainly eucalyptol (26.66%). The best surfactant, oil:water ratio (4.5-5.0-91.5; % w:w:w), allows to achieve the optimal NE, using a stirring speed of 800 rpm, the addition rate of 0.5 ml/min, and a stirring time of 30 min. NE (with particle size = 163 nm) showed a larvicide effect (LC50 = 17.86 µg/mL) more potent than the whole EO (LC50 = 64.24 µg/mL). NE showed neither hemolytic effect nor cytotoxicity, and it was classified as a nontoxic product, according to the OECD class toxicity test (IC50 > 2000 mg/kg). This product arises in a new green bio-larvicide that could be used for mosquito control.
Asunto(s)
Aedes , Croton , Insecticidas , Aceites Volátiles , Animales , Larva , Mosquitos Vectores , Hojas de la PlantaRESUMEN
INTRODUCTION: Cassia grandis Lf fruits are ethnobotanically used for digestive disorders, anemia, and for reducing blood glucose. However, there are no studies about the antidiabetic activity nor the oral toxicity of the plant fruit-extracts. This paper aims to evaluate the hypoglycemic effect of C. grandis fruits extract in vivo, and assess the acute oral toxicity, and sub-acute oral toxicity. The antioxidant activity and the α-glycosidase inhibitor effect were also evaluated. METHODS: The extract was obtained by maceration of the fruit pulp with 70% hydroalcoholic solution (1:2, m:v). The extractive solution was concentrated in a vacuum rotary evaporator, up to a drug: solvent ratio of 2:1 (g/ml). Soluble solids, relative density, refractive index, pH, total phenolics, and flavonoids were determined. A preliminary phytochemical screening was made, followed by the quantitation of volatiles by GC/MS. The acute and sub-acute oral toxicity was evaluated in Sprague Dawley rats, by using biochemical and hematological parameters. The radical scavenging activity (DPPH, ABTS) and α-glycosidase inhibitory effect were tested. The hypoglycemic effect was assessed in alloxan-induced diabetic rats. RESULTS: The extract of C. grandis contains alkaloids, coumarins, flavonoids, free amino acids, amines, phenols, tannins, reduced sugars, resins, saponins, steroids, and triterpenes, plus 38 volatile compounds, being linalool the most abundant (1,66%). The extract exhibited an LD50â¯>â¯2000â¯mg/kg, and after a continuous administration (1000â¯mg/kg, 28-days), the hematological and biochemical parameters were normal. The extract showed hypoglycemic effect, being the dose 200â¯mg/kg no statistically different from glibenclamide at 25â¯mg/kg. Good antioxidant activity and a potent α-glycosidase inhibitory effect were also observed. CONCLUSION: C. grandis extract is an excellent hypoglycemic and non-toxic plant product. The hypoglycemic mechanism could be associated with the antioxidant effect and with the α-glycosidase inhibition. Up to the best of our knowledge, this is the first report on the hypoglycemic effect in vivo of C. grandis fruits extract.
Asunto(s)
Glucemia/efectos de los fármacos , Cassia , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Frutas , Extractos Vegetales/uso terapéutico , Aloxano/toxicidad , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Femenino , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
Copaifera spp. essential oil (EOC) was extracted by hydrodistillation of Copaifera oleoresin (COR). The EOC was characterized by GC/MS and a novel EOC-loaded nanoemulsion was developed to enhance the EOC solubility and to evaluate its utility as antinflammatory. EOC contain 14 volatile compounds (including ß-caryophyllene: 51.52%) having a required HLB of 11. The Surfactant: EOC: Water ratio of 13:15:75 (%, w:w:w) produced the optimal formulation (particle size: 94.47 nm). The EOC-loaded nanoemulsion presented a pseudoplastic/thixotropic behavior with excellent shelf stability for 6 months. The anti-inflammatory effect of the nanoemulsion was more potent than that of the EOC, and statistically equal to diclofenac (50 mg/kg). The EOC-loaded nanoemulsion showed no oral acute toxicity (in mice) at 2000 mg/kg; hence, it is considered a nontoxic product. The development of the EOC-loaded nanoemulsion added value to both the COR and the EOC by providinga suitable formulation that could be used as an anti-inflammatory product.
El aceite esencial (EOC) fue extraído por hidrodestilación de oleoresina de Copaifera spp. El EOC fue caracterizado químicamente por GC/MS. Se formuló una nanoemulsión con EOC para mejorar la solubilidad del EOC y evaluar su utilidad como antiinflamatorio. El EOC contiene 14 compuestos volátiles (incluido el ß-cariofileno: 51,52%) con un HLB requerido de 11. La relación Tensioactivo: EOC: Agua de 13:15:75 (%, p:p:p) produjo la formulación óptima (tamaño de partícula: 94,47 nm).. La nanoemulsión cargada con EOC presentó un comportamiento pseudoplástico/tixotrópico con una excelente estabilidad en almacenamiento durante 6 meses. El efecto antiinflamatorio de la nanoemulsión fue más potente que el del EOC y estadísticamente igual al diclofenaco (50 mg/kg). La nanoemulsión cargada con COE no mostró toxicidad aguda oral (en ratones) a 2000 mg/kg; por lo tanto, se considera un producto no tóxico. El desarrollo de la nanoemulsión cargada con EOC agregó valor tanto al COR como al EOC al proporcionar una formulación adecuada que podría usarse como un producto antiinflamatorio.