Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 52(11): 6534-6543, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734807

RESUMEN

It is now common practice in environmental life cycle assessment (LCA) to conduct sensitivity analyses to identify critical parameters and prioritize further research. Typical approaches include variation of input parameters one at a time to determine the corresponding variation in characterized midpoints or normalized and weighted end points. Generally, those input parameters that cause the greatest variations in output criteria are accepted as the most important subjects of further investigation. However, in comparative LCA of emerging technologies, the typical approach to sensitivity analysis may misdirect research and development (R&D) toward addressing uncertainties that are inconsequential or counterproductive. This paper presents a novel method of sensitivity analysis for a decision-driven, anticipatory LCA of three emerging photovoltaic (PV) technologies: amorphous-Si (a-Si), CdTe and ribbon-Si. Although traditional approaches identify metal depletion as critical, a hypothetical reduction of uncertainty in metal depletion fails to improve confidence in the environmental comparison. By contrast, the novel approach directs attention toward marine eutrophication, where uncertainty reduction significantly improves decision confidence in the choice between a-Si and CdTe. The implication is that the novel method will result in better recommendations on the choice of the environmentally preferable emerging technology alternative for commercialization.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Telurio , Incertidumbre
2.
Environ Sci Technol ; 52(4): 2152-2161, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29406730

RESUMEN

Interpretation of comparative Life Cycle Assessment (LCA) results can be challenging in the presence of uncertainty. To aid in interpreting such results under the goal of any comparative LCA, we aim to provide guidance to practitioners by gaining insights into uncertainty-statistics methods (USMs). We review five USMs-discernibility analysis, impact category relevance, overlap area of probability distributions, null hypothesis significance testing (NHST), and modified NHST-and provide a common notation, terminology, and calculation platform. We further cross-compare all USMs by applying them to a case study on electric cars. USMs belong to a confirmatory or an exploratory statistics' branch, each serving different purposes to practitioners. Results highlight that common uncertainties and the magnitude of differences per impact are key in offering reliable insights. Common uncertainties are particularly important as disregarding them can lead to incorrect recommendations. On the basis of these considerations, we recommend the modified NHST as a confirmatory USM. We also recommend discernibility analysis as an exploratory USM along with recommendations for its improvement, as it disregards the magnitude of the differences. While further research is necessary to support our conclusions, the results and supporting material provided can help LCA practitioners in delivering a more robust basis for decision-making.


Asunto(s)
Interpretación Estadística de Datos , Reciclaje , Probabilidad , Incertidumbre
3.
J Clean Prod ; 161: 957-967, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32461713

RESUMEN

Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Initiative. As part of these efforts, a dedicated task force focused on addressing several LCIA cross-cutting issues as aspects spanning several impact categories, including spatiotemporal aspects, reference states, normalization and weighting, and uncertainty assessment. Here, findings of the cross-cutting issues task force are presented along with an update of the existing UNEP-SETAC LCIA emission-to-damage framework. Specific recommendations are provided with respect to metrics for human health (Disability Adjusted Life Years, DALY) and ecosystem quality (Potentially Disappeared Fraction of species, PDF). Additionally, we stress the importance of transparent reporting of characterization models, reference states, and assumptions, in order to facilitate cross-comparison between chosen methods and indicators. We recommend developing spatially regionalized characterization models, whenever the nature of impacts shows spatial variability and related spatial data are available. Standard formats should be used for reporting spatially differentiated models, and choices regarding spatiotemporal scales should be clearly communicated. For normalization, we recommend using external normalization references. Over the next two years, the task force will continue its effort with a focus on providing guidance for LCA practitioners on how to use the UNEP-SETAC LCIA framework as well as for method developers on how to consistently extend and further improve this framework.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda