Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
Nanomedicine ; 9(7): 985-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23603355

RESUMEN

We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1ß and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. FROM THE CLINICAL EDITOR: In this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.


Asunto(s)
Inmunidad Innata/inmunología , Ácido Láctico/química , Leishmania/citología , Leishmania/inmunología , Nanopartículas/química , Ácido Poliglicólico/química , Proteínas Protozoarias/inmunología , Animales , Muerte Celular/efectos de los fármacos , Quimiocinas/metabolismo , ADN/metabolismo , Femenino , Inmunidad Innata/efectos de los fármacos , Inflamasomas/metabolismo , Ácido Láctico/farmacología , Leishmania/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/biosíntesis , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Superóxidos/metabolismo
2.
Front Microbiol ; 9: 2283, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323793

RESUMEN

Leishmania braziliensis infection causes skin ulcers, typically found in localized cutaneous leishmaniasis (LCL). This tissue pathology associates with different modalities of cell necrosis, which are subverted by the parasite as a survival strategy. Herein we examined the participation of necroptosis, a specific form of programmed necrosis, in LCL lesions and found reduced RIPK3 and PGAM5 gene expression compared to normal skin. Assays using infected macrophages demonstrated that the parasite deactivates both RIPK3 and MLKL expression and that these molecules are important to control the intracellular L. braziliensis replication. Thus, LCL-related necroptosis may be targeted to control infection and disease immunopathology.

3.
Front Immunol ; 9: 1818, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154785

RESUMEN

Necroptosis is a pro-inflammatory cell death, which happens in the context of caspase-8 inhibition, allowing activation of the receptor interacting protein kinase 1-receptor interacting protein kinase 3-mixed lineage kinase domain-like (RIPK1-RIPK3-MLKL) axis. Recently, necroptosis has emerged as a key component of resistance against pathogens including infected macrophage by Leishmania infantum, the ethiologic agent of Visceral leishmaniasis (VL). VL is the most severe form of Leishmaniasis, characterized by systemic inflammation and neutropenia. However, the role of neutrophil cell death in VL has not been characterized. Here, we showed that VL patients exhibited increased lactate dehydrogenase levels in the serum, a hallmark of cell death and tissue damage. We investigated the effect of necroptosis in neutrophil infection in vitro. Human neutrophils pretreated with zVAD-fmk (pan-caspase inhibitor) and zIETD-fmk (caspase-8 inhibitor) increased reactive oxygen species (ROS) level in response to Leishmania infection, which is associated with necroptotic cell death. MLKL, an important effector molecule downstream of necroptosis pathway, was also required for Leishmania killing. Moreover, in absence of caspases-8, murine neutrophils displayed loss of membrane integrity, higher levels of ROS, and decreased L. infantum viability. Pharmacological inhibition of RIPK1 or RIPK3 increased parasite survival when caspase-8 was blocked. Electron microscopy assays revealed morphological features associated with necroptotic death in L. infantum infected-neutrophils pretreated with caspase inhibitor, whereas infected cells pretreated with RIPK1 and RIPK3 inhibitors did not show ultra-structural alterations in membrane integrity and presented viable Leishmania within parasitophorous vacuoles. Taken together, these findings suggest that inhibition of caspase-8 contributes to elimination of L. infantum in neutrophils by triggering necroptosis. Thus, targeting necroptosis may represent a new strategy to control Leishmania replication.


Asunto(s)
Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Biomarcadores , Caspasa 8/metabolismo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/patología , Masculino , Ratones , Necrosis , Neutrófilos/parasitología , Neutrófilos/ultraestructura
4.
Front Microbiol ; 9: 881, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867796

RESUMEN

During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where Leishmania is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by Leishmania remains undefined. Here we further investigate if interaction of Lutzomyia longipalpis salivary gland sonicate (SGS) with different host cells present during the initial inflammatory events regulate Leishmania infantum infectivity. Initially, we observed that incubation of human peripheral blood mononuclear cells (PBMC) with Lu. longipalpis SGS in the presence of L. infantum significantly increased IL-10 but did not alter expression of IFN-γ and TNF-α by CD4+ T cells induced by the parasite alone. Interestingly, incubation of PBMC with Lu. longipalpis SGS alone or in the presence of L. infantum resulted in increased IL-17 production. The presence of IL-17 is related to neutrophil recruitment and plays an important role at the site of infection. Here, we also observed increased migration of neutrophil using an in vitro chemotactic assay following incubation with supernatants from PBMC stimulated with L. infantum and Lu. longipalpis SGS. Neutrophil migration was abrogated following neutralization of IL-17 with specific antibodies. Moreover, culture of human neutrophils with L. infantum in the presence of Lu. longipalpis SGS promoted neutrophil apoptosis resulting in increased parasite viability. Neutrophils operate as the first line of defense in the early stages of infection and later interact with different cells, such as macrophages. The crosstalk between neutrophils and macrophages is critical to determine the type of specific immune response that will develop. Here, we observed that co-culture of human macrophages with autologous neutrophils previously infected in the presence of Lu. longipalpis SGS resulted in a higher infection rate, accompanied by increased production of TGF-ß and PGE2. Our results provide new insight into the contribution of Lu. longipalpis SGS to L. infantum-induced regulation of important inflammatory events, creating a favorable environment for parasite survival inside different host cells.

5.
J Med Entomol ; 44(6): 903-14, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18047187

RESUMEN

Lutzomyia (Nyssomyia) intermedia (Lutz & Neiva 1912) and Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho 1939) (Diptera: Psychodidae) are vectors of American cutaneous leishmaniasis in several endemic regions of Brazil. We analyzed the external morphological aspects of the immature stages of these two vectors by using scanning electron microscopy. In general, the larval stages of the two species are morphologically similar, although some differences were noted. Detailed examination of the eggs of both species revealed similar exchorionic ornamentations of unconnected parallel ridges. The larval head capsules are well defined, heavily sclerotized, and bear prominent chewing mouthparts. The abdominal segments are easily recognized by the presence of prolegs on their ventral surfaces. The morphology of the anal lobe on the terminal abdominal segment differs between the two species. We found the following three types of sensillae inserted on the antennae: (1) clavate basiconic; (2) small, blunt coeloconic; and (3) multipourous clavate coleoconic. In addition; five subtypes of trichoid sensillae were found on the larval body: (1) long, (2) short, (3) curved long, (4) brush-like, and (5) weakly brush-like. The caudal filaments located on the last abdominal segment were recognized as long trichoid sensillae. We observed pores on the surface of the clavate coelonic sensillae and on the caudal filaments that presumably function as chemoreceptors. The larvae of the two species show similarities in the lobular-form antennae of L1 larvae, which changes to digitiform in second instar (L2), L3, and L4. This study demonstrated that the external surface of the eggs and larvae of Lu. intermedia and Lu. whitmani are morphologically similar, but they can be distinguished by details in the microanatomy observed by scanning electron microscopy.


Asunto(s)
Leishmaniasis Cutánea/transmisión , Psychodidae/ultraestructura , Animales , Insectos Vectores , Larva/ultraestructura , Microscopía Electrónica de Rastreo , Óvulo/ultraestructura
6.
Front Immunol ; 8: 1620, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29218050

RESUMEN

Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.

7.
PLoS Negl Trop Dis ; 9(3): e0003601, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25756874

RESUMEN

BACKGROUND: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. METHODS AND FINDINGS: Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. CONCLUSIONS: We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.


Asunto(s)
Apoptosis , Leishmania braziliensis , Leishmania/inmunología , Activación Neutrófila , Animales , Antígenos CD18/análisis , Femenino , Selectina L/análisis , Leishmania braziliensis/inmunología , Elastasa de Leucocito/biosíntesis , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Superóxidos/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda