Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioconjug Chem ; 28(11): 2729-2736, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29035511

RESUMEN

We present an approach to tuning the multifunctionality of iron oxide nanoparticles (IONs) using mixed self-assembled monolayers of cationic lipid and anionic polyethylene glycol (PEG) lipid. By forming stable, monodispersed lipid-coated IONs (L-IONs) through a solvent-exchange technique, we were able to demonstrate the relationship between surface charge, the magnetic transverse relaxivity (r2 from T2-weighted images), and the binding capacity of small interfering ribonucleic acids (siRNAs) as a function of the cationic-to-anionic (PEG) lipid ratio. These properties were controlled by the cationic charge and the PEG conformation; relaxivity and siRNA binding could be varied in the mushroom and brush regimes but not at high brush densities. In vitro results combining cell viability, uptake, and transfection efficiency using HeLa cells suggest that the functional physicochemical and biological properties of L-IONs may be best achieved using catanionic lipid coatings near equimolar ratios of cationic to anionic PEG-lipids.


Asunto(s)
Compuestos Férricos/química , Lípidos/química , Nanopartículas/química , Polietilenglicoles/química , Células HeLa , Humanos , Nanopartículas de Magnetita/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Transfección
2.
Expert Opin Drug Deliv ; 8(8): 1025-40, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21663539

RESUMEN

INTRODUCTION: Nanoscale assemblies are needed that achieve multiple therapeutic objectives, including cellular targeting, imaging, diagnostics and drug delivery. These must exhibit high stability, bioavailability and biocompatibility, while maintaining or enhancing the inherent activity of the therapeutic cargo. Liposome-nanoparticle assemblies (LNAs) combine the demonstrated potential of liposome-based therapies, with functional nanoparticles. Specifically, LNAs can be used to concentrate and shield the nanoparticles and, in turn, stimuli-responsive nanoparticles that respond to external fields can be used to control liposomal release. The ability to design LNAs via nanoparticle encapsulation, decoration or bilayer-embedment offers a range of configurations with different structures and functions. AREAS COVERED: This paper reviews the current state of research and understanding of the design, characterization and performance of LNAs. A brief overview is provided on liposomes and nanoparticles for therapeutic applications, followed by a discussion of the opportunities and challenges associated with combining the two in a single assembly to achieve controlled release via light or radiofrequency stimuli. EXPERT OPINION: LNAs offer a unique opportunity to combine the therapeutic properties of liposomes and nanoparticles. Liposomes act to concentrate small nanoparticles and shield nanoparticles from the immune system, while the nanoparticle can be used to initiate and control drug release when exposed to external stimuli. These properties provide a platform to achieve nanoparticle-controlled liposomal release. LNA design and application are still in infancy. Research concentrating on the relationships among LNA structure, function and performance is essential for the future clinical use of LNAs.


Asunto(s)
Liposomas , Nanopartículas , Humanos , Hipertermia Inducida , Membrana Dobles de Lípidos , Microscopía Electrónica de Transmisión , Neoplasias/terapia , Propiedades de Superficie
3.
J Colloid Interface Sci ; 357(1): 70-4, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21353234

RESUMEN

Temperature measurements have been made within magnetite (Fe(3)O(4)) nanoparticle-liposome dispersions subjected to electromagnetic field at radiofrequency (RF) heating based on the fluorescence anisotropy of diphenylhexatriene (DPH) embedded within the bilayer. Incorporating cholesterol within dipalmitoylphosphatidylcholine (DPPC) bilayers broadened the anisotropy window associated with lipid melting. Cryogenic transmission electron microscopy showed that the dispersions contained magnetoliposomes with nanoparticle aggregates at both low and high encapsulation densities. RF heating results demonstrated the ability to measure the temperature of the ML bilayer with on/off RF cycles using DPH anisotropy. These measurements reflected the temperature of the bulk aqueous phase, which is consistent with previous work showing rapid heat dissipation from a nanoparticle surface during RF heating and a negligible difference between surface and bulk temperature.


Asunto(s)
Polarización de Fluorescencia/métodos , Calefacción , Membrana Dobles de Lípidos , Liposomas/química , Nanopartículas de Magnetita , 1,2-Dipalmitoilfosfatidilcolina , Colesterol , Medios de Contraste , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda