Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 59(2): 763-768, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31665559

RESUMEN

We report the synthesis of a set of 2D metal-organic frameworks (MOFs) constructed with organosilicon-based linkers. These oligosilyl MOFs feature linear Sin Me2n (C6 H4 CO2 H)2 ligands (lin-Sin , n=2, 4) connected by Cu paddlewheels. The stacking arrangement of the 2D sheets is dictated by van der Waals interactions and is tunable by solvent exchange, leading to reversible structural transformations between many crystalline and amorphous phases.

2.
J Am Chem Soc ; 141(44): 17926-17936, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31600060

RESUMEN

We report the synthesis of both diastereomers of an all-silicon analog of decalin. Carbocyclic decalin is a ubiquitous bicyclic structural motif. The siladecalin synthesis provides materials functionalized with either Si-Ph or Si-H groups, versatile entry points for further chemical diversification. The synthesis of silicon-stereogenic silanes is significantly less precedented than the synthesis of asymmetric carbon centers, and strategies for control of relative stereochemistry in oligosilanes are hardly described. This study offers insights of potential generality, such as the epimerization of the cis-isomer to the thermodynamically downhill trans-isomer via a hypothesized pentavalent intermediate. Decalin is a classic example in the conformational analysis of organic ring systems, and the carbocyclic diastereomers have highly divergent conformational profiles. Like the carbocycle, we observe different conformational properties in cis- and trans-siladecalins with consequences for NMR spectroscopy, optical properties, and vibrational spectroscopy. This study showcases the utility of targeted synthesis for preparing complex and functionalized polycyclic silanes.

3.
J Am Chem Soc ; 140(18): 5976-5986, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29635912

RESUMEN

Silicon nanomaterials combine earth abundance and biodegradability with exceptional electronic properties. Strategic synthesis promises access to novel architectures with well-defined surface structure, size, and shape. Herein, we describe a five-step synthesis of functional macrocyclic polysilanes. Comparison of the materials isolated from isomeric building blocks provides evidence that building block directionality controls the shape of the resulting nanomaterial. Infrared (IR) and 1H and 29Si NMR spectroscopies, coupled to computational data, provide evidence of a well-defined Si-H and Si-Me terminated structure. The intrinsic porosity and the polarization arising from the hydridic character of the Si-H bond suggest applications in lithium-ion batteries, which are supported by quantum chemical calculations.

4.
Chemistry ; 23(62): 15633-15637, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28940844

RESUMEN

This crystallographic and computational study describes an unusual potassium silanide structure. A contact ion pair is expected in the solid state between potassium and silicon, yet the potassium cation binds an aromatic ring and the anionic silanide interacts with CH bonds on neighboring crown ether molecules. These structure-bonding phenomena are attributed to strong soft-soft interactions.

5.
Angew Chem Int Ed Engl ; 56(2): 568-572, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27897420

RESUMEN

We report a strategic synthesis of poly(cyclosilane), a well-defined polymer inspired by crystalline silicon. The synthetic strategy relies on the design of a functionalized cyclohexasilane monomer for transition-metal-promoted dehydrocoupling polymerization. Our approach takes advantage of the dual function of the phenylsilyl group, which serves a crucial role both in the synthesis of a novel α,ω-oligosilanyl dianion and as a latent electrophile. We show that the cyclohexasilane monomer prefers a chair conformation. The monomer design ensures enhanced reactivity in transition-metal-promoted dehydrocoupling polymerization relative to secondary silanes, such as methylphenylsilane. Comprehensive NMR spectroscopy yields a detailed picture of the polymer end-group structure and microstructure. Poly(cyclosilane) has red-shifted optical absorbance relative to the monomer. We synthesize a σ-π hybrid donor-acceptor polymer by catalytic hydrosilylation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda