Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723799

RESUMEN

Three-methyl cytosine (3meC) are toxic DNA lesions, blocking base pairing. Bacteria and humans express members of the AlkB enzymes family, which directly remove 3meC. However, other organisms, including budding yeast, lack this class of enzymes. It remains an unanswered evolutionary question as to how yeast repairs 3meC, particularly in single-stranded DNA. The yeast Shu complex, a conserved homologous recombination factor, aids in preventing replication-associated mutagenesis from DNA base damaging agents such as methyl methanesulfonate (MMS). We found that MMS-treated Shu complex-deficient cells exhibit a genome-wide increase in A:T and G:C substitutions mutations. The G:C substitutions displayed transcriptional and replicational asymmetries consistent with mutations resulting from 3meC. Ectopic expression of a human AlkB homolog in Shu-deficient yeast rescues MMS-induced growth defects and increased mutagenesis. Thus, our work identifies a novel homologous recombination-based mechanism mediated by the Shu complex for coping with alkylation adducts.


Asunto(s)
Recombinación Homóloga/efectos de los fármacos , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Saccharomyces cerevisiae/genética , Alquilación , Mutagénesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Clin Epigenetics ; 11(1): 162, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31767035

RESUMEN

BACKGROUND: Over the last several decades, the average age of first-time mothers has risen steadily. With increasing maternal age comes a decrease in fertility, which in turn has led to an increase in the use of assisted reproductive technologies by these women. Assisted reproductive technologies (ARTs), including superovulation and embryo culture, have been shown separately to alter imprinted DNA methylation maintenance in blastocysts. However, there has been little investigation on the effects of advanced maternal age, with or without ARTs, on genomic imprinting. We hypothesized that ARTs and advanced maternal age, separately and together, alter imprinted methylation in mouse preimplantation embryos. For this study, we examined imprinted methylation at three genes, Snrpn, Kcnq1ot1, and H19, which in humans are linked to ART-associated methylation errors that lead to imprinting disorders. RESULTS: Our data showed that imprinted methylation acquisition in oocytes was unaffected by increasing maternal age. Furthermore, imprinted methylation was normally acquired when advanced maternal age was combined with superovulation. Analysis of blastocyst-stage embryos revealed that imprinted methylation maintenance was also not affected by increasing maternal age. In a comparison of ARTs, we observed that the frequency of blastocysts with imprinted methylation loss was similar between the superovulation only and the embryo culture only groups, while the combination of superovulation and embryo culture resulted in a higher frequency of mouse blastocysts with maternal imprinted methylation perturbations than superovulation alone. Finally, the combination of increasing maternal age with ARTs had no additional effect on the frequency of imprinted methylation errors. CONCLUSION: Collectively, increasing maternal age with or without superovulation had no effect of imprinted methylation acquisition at Snrpn, Kcnq1ot1, and H19 in oocytes. Furthermore, during preimplantation development, while ARTs generated perturbations in imprinted methylation maintenance in blastocysts, advanced maternal age did not increase the burden of imprinted methylation errors at Snrpn, Kcnq1ot1, and H19 when combined with ARTs. These results provide cautious optimism that advanced maternal age is not a contributing factor to imprinted methylation errors in embryos produced in the clinic. Furthermore, our data on the effects of ARTs strengthen the need to advance clinical methods to reduce imprinted methylation errors in in vitro-produced embryos.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Impresión Genómica , Técnicas Reproductivas Asistidas/efectos adversos , Animales , Blastocisto , Femenino , Humanos , Edad Materna , Ratones , Modelos Animales , ARN Largo no Codificante/genética , Proteínas Nucleares snRNP/genética
3.
DNA Repair (Amst) ; 76: 99-107, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836272

RESUMEN

The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Mutación , Línea Celular Tumoral , Humanos , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional
4.
Nat Commun ; 10(1): 3515, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383866

RESUMEN

Accurate DNA replication is essential for genomic stability and cancer prevention. Homologous recombination is important for high-fidelity DNA damage tolerance during replication. How the homologous recombination machinery is recruited to replication intermediates is unknown. Here, we provide evidence that a Rad51 paralog-containing complex, the budding yeast Shu complex, directly recognizes and enables tolerance of predominantly lagging strand abasic sites. We show that the Shu complex becomes chromatin associated when cells accumulate abasic sites during S phase. We also demonstrate that purified recombinant Shu complex recognizes an abasic analog on a double-flap substrate, which prevents AP endonuclease activity and endonuclease-induced double-strand break formation. Shu complex DNA binding mutants are sensitive to methyl methanesulfonate, are not chromatin enriched, and exhibit increased mutation rates. We propose a role for the Shu complex in recognizing abasic sites at replication intermediates, where it recruits the homologous recombination machinery to mediate strand specific damage tolerance.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Genome Announc ; 4(4)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516497

RESUMEN

BetterKatz is a bacteriophage isolated from a soil sample collected in Pittsburgh, Pennsylvania using the host Gordonia terrae 3612. BetterKatz's genome is 50,636 bp long and contains 75 predicted protein-coding genes, 35 of which have been assigned putative functions. BetterKatz is not closely related to other sequenced Gordonia phages.

6.
Genome Announc ; 4(4)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516498

RESUMEN

Gordonia phages Bowser and Schwabeltier are newly isolated phages infecting Gordonia terrae 3612. Bowser and Schwabeltier have similar siphoviral morphologies and their genomes are related to each other, but not to other phages. Their lysis cassettes are atypically situated among virion tail genes, and Bowser encodes two tyrosine integrases.

7.
Genome Announc ; 4(4)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516499

RESUMEN

Emalyn is a newly isolated bacteriophage of Gordonia terrae 3612 and has a double-stranded DNA genome 43,982 bp long with 67 predicted protein-encoding genes, 32 of which we can assign putative functions. Emalyn has a prolate capsid and has extensive nucleotide similarity with several previously sequenced phages.

8.
Genome Announc ; 3(3)2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26089411

RESUMEN

Mycobacteriophage Mindy is a newly isolated phage of Mycobacterium smegmatis, recovered from a soil sample in Pittsburgh, Pennsylvania, USA. Mindy has a genome length of 75,796 bp, encodes 147 predicted proteins and two tRNAs, and is closely related to mycobacteriophages in cluster E.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda