RESUMEN
In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.
Asunto(s)
Agricultores , Genómica , Linaje , Peste , Dinámica Poblacional , Yersinia pestis , Femenino , Humanos , Masculino , Cementerios/historia , Agricultores/historia , Genoma Bacteriano/genética , Historia Antigua , Filogenia , Peste/epidemiología , Peste/historia , Peste/microbiología , Peste/mortalidad , Países Escandinavos y Nórdicos/epidemiología , Factores de Tiempo , Factores de Virulencia/genética , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificaciónRESUMEN
Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.
Asunto(s)
Genoma Humano , Genómica , Migración Humana , Pueblos Nórdicos y Escandinávicos , Humanos , Dinamarca/etnología , Emigrantes e Inmigrantes/historia , Genotipo , Pueblos Nórdicos y Escandinávicos/genética , Pueblos Nórdicos y Escandinávicos/historia , Migración Humana/historia , Genoma Humano/genética , Historia Antigua , Polen , Dieta/historia , Caza/historia , Agricultores/historia , Cultura , Fenotipo , Conjuntos de Datos como AsuntoRESUMEN
In Fig. 2 of this Letter, the 'E' and 'G' clade labels were inadvertently reversed, and in Table 2 the genotype of DA27 was 'D1' instead of 'D5'. These have been corrected online.
RESUMEN
Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.
Asunto(s)
Evolución Molecular , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B/virología , Filogenia , África , Animales , Asia , Europa (Continente) , Genotipo , Virus de la Hepatitis B/clasificación , Historia Antigua , Historia Medieval , Hominidae/virología , Migración Humana/historia , Humanos , Recombinación GenéticaRESUMEN
Archaeological dental calculus, or mineralized plaque, is a key tool to track the evolution of oral microbiota across time in response to processes that impacted our culture and biology, such as the rise of farming during the Neolithic. However, the extent to which the human oral flora changed from prehistory until present has remained elusive due to the scarcity of data on the microbiomes of prehistoric humans. Here, we present our reconstruction of oral microbiomes via shotgun metagenomics of dental calculus in 44 ancient foragers and farmers from two regions playing a pivotal role in the spread of farming across Europe-the Balkans and the Italian Peninsula. We show that the introduction of farming in Southern Europe did not alter significantly the oral microbiomes of local forager groups, and it was in particular associated with a higher abundance of the species Olsenella sp. oral taxon 807. The human oral environment in prehistory was dominated by a microbial species, Anaerolineaceae bacterium oral taxon 439, that diversified geographically. A Near Eastern lineage of this bacterial commensal dispersed with Neolithic farmers and replaced the variant present in the local foragers. Our findings also illustrate that major taxonomic shifts in human oral microbiome composition occurred after the Neolithic and that the functional profile of modern humans evolved in recent times to develop peculiar mechanisms of antibiotic resistance that were previously absent.
Asunto(s)
Agricultura/historia , ADN Antiguo , Cálculos Dentales/genética , Cálculos Dentales/microbiología , Microbiota/genética , Bacterias/genética , Peninsula Balcánica , Cálculos Dentales/química , Farmacorresistencia Microbiana/genética , Europa (Continente) , Historia Antigua , Historia Medieval , Humanos , Filogenia , Plantas/químicaRESUMEN
The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.
Asunto(s)
Pueblo Asiatico/genética , Evolución Cultural/historia , Fósiles , Genoma Humano/genética , Genómica , Lenguaje/historia , Población Blanca/genética , Arqueología/métodos , Asia/etnología , ADN/genética , ADN/aislamiento & purificación , Europa (Continente)/etnología , Frecuencia de los Genes/genética , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Intolerancia a la Lactosa/genética , Polimorfismo de Nucleótido Simple/genética , Pigmentación de la Piel/genéticaRESUMEN
OBJECTIVES: The ancient city of Chichén Itzá in the northern Yucatán of Mexico was one of the most important in the Maya area, but its origins and history are poorly understood. A major question concerns the origins of the peoples who founded and later expanded the ancient city. Hundreds of people were ritually executed and their bodies thrown into the waters of the Sacred Cenote at Chichén. MATERIALS AND METHODS: In this study, we use strontium and oxygen isotopes to study the place of origin of a large sample of these individuals. Isotopes are deposited in human tooth enamel. Enamel forms during the first years of life, remains largely unchanged long past death, and can provide a signature of the place of birth. If the isotope ratios in enamel are different from the place of death, the individual must have moved during his/her lifetime. RESULTS: Comparison of our results from the cenote with information on isotope ratios across the Maya region and elsewhere suggests that the individuals in the cenote came from a number of different parts of Mexico and possibly beyond. DISCUSSION: It is not known if all of the sacrificial victims resided in Chichén Itzá, but their suggested origins likely reflect patterns of population movement and social networks that existed between Chichén Itzá and both neighboring and distant regions. Various lines of evidence point to places in the Yucatán, along the Gulf Coast, Central America, or even in the Central Highlands of Mexico.
Asunto(s)
Conducta Ceremonial , Indígenas Norteamericanos/etnología , Indígenas Norteamericanos/historia , Adulto , Antropología Física , Niño , Preescolar , Femenino , Historia Medieval , Humanos , Masculino , México/etnología , Isótopos de Oxígeno/análisis , Cráneo/química , Cráneo/lesiones , Cráneo/patología , Isótopos de Estroncio/análisisRESUMEN
Questions about how farming and the Neolithic way of life spread across Europe have been hotly debated topics in archaeology for decades. For a very long time, two models have dominated the discussion: migrations of farming groups from southwestern Asia versus diffusion of domesticates and new ideas through the existing networks of local forager populations. New strontium isotope data from the Danube Gorges in the north-central Balkans, an area characterized by a rich burial record spanning the Mesolithic-Neolithic transition, show a significant increase in nonlocal individuals from â¼6200 calibrated B.C., with several waves of migrants into this region. These results are further enhanced by dietary evidence based on carbon and nitrogen isotopes and an increasingly high chronological resolution obtained on a large sample of directly dated individuals. This dataset provides robust evidence for a brief period of coexistence between indigenous groups and early farmers before farming communities absorbed the foragers completely in the first half of the sixth millennium B.C.
Asunto(s)
Migración Humana , Adulto , Arqueología , Peninsula Balcánica , Femenino , Geografía , Fenómenos Geológicos , Humanos , Masculino , Isótopos de Nitrógeno , Datación Radiométrica , Isótopos de Estroncio , Factores de TiempoRESUMEN
OBJECTIVES: This article aims to infer population dynamics in the Noh Bec region (Yucatán Peninsula, México) during the Maya Classic period (AD 350-800), based on a combined analysis of dental morphology and (87) Sr/(86) Sr isotopes, and on a comparison of the dental evidence together with archaeological signs of trade and relationships with other regions in the Maya world. METHODS: Twenty-three dental morphological variables were used to estimate affinities between dental collections from Noh Bec and 10 more sites from the region. (87) Sr/(86) Sr isotopes were recorded from the enamel of permanent teeth of 32 individuals from Noh Bec, and compared to the site's local chemical signature. RESULTS: Dental morphology reveals a strong affinity with Kohunlich, in the central Maya lowlands, while some diversity can be noted with the Petén sites (such as Calakmul) as well as sites on the northern coast of the peninsula. The local extent of (87) Sr/(86) Sr variation ranges between 0.7086 and 0.7088. Eight of the 32 Noh Bec individuals analyzed were born elsewhere. Isotopic values indicate different places of origin although apparently none were from the northern coast of the peninsula; instead, the range of variability reflects many locations along the western coast of the peninsula as well as inland sites in the Chenes region in Campeche. CONCLUSIONS: Dental morphology and (87) Sr/(86) Sr ratios indicate intense population dynamics in the peninsula during the Maya Classic period. Despite the different nature of the dental and isotopic indicators, results agree with archaeological evidence and with proposed trade routes in the peninsula.
Asunto(s)
Antropología Física/métodos , Dinámica Poblacional/historia , Diente , Historia Antigua , Humanos , México , Esqueleto , Isótopos de EstroncioRESUMEN
Human remains representing 33 individuals buried along the coast in northern Norway were analyzed for diet composition using collagen stable carbon and nitrogen isotope analysis. Where possible, both teeth and bone were included to investigate whether there were dietary changes from childhood to adulthood. A general shift was documented from the Merovingian Age 550-800 AD to the Viking Age AD 800-1050 (VA), with a heavier reliance on marine diet in the VA. Dietary life history data show that 15 individuals changed their diets through life with 11 of these having consumed more marine foods in the later years of life. In combination with (87) Sr/(86) Sr data, it is argued that at least six individuals possibly originated from inland areas and then moved to the coastal region where they were eventually interred. The trend is considered in relation to the increasing expansion of the marine fishing industry at this time, and it is suggested that results from isotope analyses reflect the expanding production and export of stockfish in this region.
Asunto(s)
Huesos/química , Dieta/historia , Isótopos/análisis , Conducta Social/historia , Diente/química , Adolescente , Adulto , Animales , Niño , Perros , Femenino , Historia Medieval , Migración Humana , Humanos , Masculino , Persona de Mediana Edad , Noruega , Ovinos , Adulto JovenRESUMEN
The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers found in Denmark, and associates with hunter-gatherers, who inhabited Scandinavia during the previous millennia. His skeletal remains were selected for transdisciplinary analysis to reveal his life-history in terms of a population historical perspective. We report the combined results of an integrated set of genetic, isotopic, physical anthropological and archaeological analytical approaches. Strontium signature suggests a foreign birthplace that could be in Norway or Sweden. In addition, enamel oxygen isotope values indicate that as a child he lived in a colder climate, i.e., to the north of the regions inhabited by farmers. Genomic data in fact demonstrates that he is closely related to Mesolithic humans known from Norway and Sweden. Moreover, dietary stable isotope analyses on enamel and bone collagen demonstrate a fisher-hunter way of life in his childhood and a diet typical of farmers later on. Such a variable life-history is also reflected by proteomic analysis of hardened organic deposits on his teeth, indicating the consumption of forager food (seal, whale and marine fish) as well as farmer food (sheep/goat). From a dietary isotopic transect of one of his teeth it is shown that his transfer between societies of foragers and farmers took place near to the end of his teenage years.
Asunto(s)
Emigrantes e Inmigrantes , Proteómica , Humanos , Masculino , Niño , Animales , Ovinos , Adolescente , Agricultura/historia , Isótopos de Oxígeno , DinamarcaRESUMEN
Forager focus on wild cereal plants has been documented in the core zone of domestication in southwestern Asia, while evidence for forager use of wild grass grains remains sporadic elsewhere. In this paper, we present starch grain and phytolith analyses of dental calculus from 60 Mesolithic and Early Neolithic individuals from five sites in the Danube Gorges of the central Balkans. This zone was inhabited by likely complex Holocene foragers for several millennia before the appearance of the first farmers ~6200 cal BC. We also analyzed forager ground stone tools (GSTs) for evidence of plant processing. Our results based on the study of dental calculus show that certain species of Poaceae (species of the genus Aegilops) were used since the Early Mesolithic, while GSTs exhibit traces of a developed grass grain processing technology. The adoption of domesticated plants in this region after ~6500 cal BC might have been eased by the existing familiarity with wild cereals.
Before humans invented agriculture and the first farmers appeared in southwestern Asia, other ancient foragers (also known as hunter-gatherers) in southeastern Europe had already developed a taste for consuming wild plants. There is evidence to suggest that these foragers were intensely gathering wild cereal grains before the arrival of agriculture. However, until now, the only place outside southwestern Asia this has been shown to have occurred is in Greece, and is dated around 20,000 years ago. In the past, researchers proposed that forager societies in the Balkans also consumed wild cereals before transitioning to agriculture. But this has been difficult to prove because plant foods are less likely to preserve than animal bones and teeth, making them harder to detect in prehistoric contexts. To overcome this, Cristiani et al. studied teeth from 60 individuals found in archaeological sites between Serbia and Romania, which are attributed to the Mesolithic and Early Neolithic periods. Food particles extracted from crusty deposits on the teeth (called the dental calculus) were found to contain structures typically found in plants. In addition, Cristiani et al. discovered similar plant food residues on ground stone tools which also contained traces of wear associated with the processing of wild cereals. These findings suggest that foragers in the central Balkans were already consuming certain species of wild cereal grains 11,500 years ago, before agriculture arrived in Europe. It is possible that sharing knowledge about plant resources may have helped introduce domesticated plant species in to this region as early as 6500 BC. This work challenges the deep-rooted idea that the diet of hunter-gatherers during the Palaeolithic and Mesolithic periods primarily consisted of animal proteins. In addition, it highlights the active role the eating habits of foragers might have played in introducing certain domesticated plant species that have become primary staples of our diet today.
Asunto(s)
Agricultura/historia , Grano Comestible , Agricultores/historia , Conducta Alimentaria , Peninsula Balcánica , Domesticación , Historia Antigua , Humanos , Diente/anatomía & histologíaRESUMEN
The Gjerrild burial provides the largest and best-preserved assemblage of human skeletal material presently known from the Single Grave Culture (SGC) in Denmark. For generations it has been debated among archaeologists if the appearance of this archaeological complex represents a continuation of the previous Neolithic communities, or was facilitated by incoming migrants. We sampled and analysed five skeletons from the Gjerrild cist, buried over a period of c. 300 years, 2600/2500-2200 cal BCE. Despite poor DNA preservation, we managed to sequence the genome (>1X) of one individual and the partial genomes (0.007X and 0.02X) of another two individuals. Our genetic data document a female (Gjerrild 1) and two males (Gjerrild 5 + 8), harbouring typical Neolithic K2a and HV0 mtDNA haplogroups, but also a rare basal variant of the R1b1 Y-chromosomal haplogroup. Genome-wide analyses demonstrate that these people had a significant Yamnaya-derived (i.e. steppe) ancestry component and a close genetic resemblance to the Corded Ware (and related) groups that were present in large parts of Northern and Central Europe at the time. Assuming that the Gjerrild skeletons are genetically representative of the population of the SGC in broader terms, the transition from the local Neolithic Funnel Beaker Culture (TRB) to SGC is not characterized by demographic continuity. Rather, the emergence of SGC in Denmark was part of the Late Neolithic and Early Bronze Age population expansion that swept across the European continent in the 3rd millennium BCE, resulting in various degrees of genetic replacement and admixture processes with previous Neolithic populations.
Asunto(s)
Arqueología , Genómica , Esqueleto/metabolismo , ADN Antiguo , Dinamarca , Femenino , Haplotipos , Historia Antigua , Migración Humana , Humanos , Masculino , Análisis para Determinación del SexoRESUMEN
There is a significant number of funerary contexts for the Early Neolithic in the Iberian Peninsula, and the body of information is much larger for the Late Neolithic. In contrast, the archaeological information available for the period in between (ca. 4800-4400/4200 cal BC) is scarce. This period, generally called Middle Neolithic, is the least well-known of the peninsular Neolithic sequence, and at present there is no specific synthesis on this topic at the peninsular scale. In 2017, an exceptional funerary context was discovered at Dehesilla Cave (Sierra de Cádiz, Southern Iberian Peninsula), providing radiocarbon dates which place it at the beginning of this little-known Middle Neolithic period, specifically between ca. 4800-4550 cal BC. Locus 2 is a deposition constituted by two adult human skulls and the skeleton of a very young sheep/goat, associated with stone structures and a hearth, and a number of pots, stone and bone tools and charred plant remains. The objectives of this paper are, firstly, to present the new archaeological context documented at Dehesilla Cave, supported by a wide range of data provided by interdisciplinary methods. The dataset is diverse in nature: stratigraphic, osteological, isotopic, zoological, artifactual, botanical and radiocarbon results are presented together. Secondly, to place this finding within the general context of the contemporaneous sites known in the Iberian Peninsula through a systematic review of the available evidence. This enables not only the formulation of explanations of the singular new context, but also to infer the possible ritual funerary behaviours and practices in the 5th millennium cal BC in the Iberian Peninsula.
Asunto(s)
Conducta Ceremonial , Ritos Fúnebres/historia , Animales , Arqueología , Cuevas , Fósiles/anatomía & histología , Fósiles/historia , Historia Antigua , Humanos , Portugal , Datación Radiométrica , Cráneo/anatomía & histología , EspañaRESUMEN
Archaeogenetic research over the last decade has demonstrated that European Neolithic farmers (ENFs) were descended primarily from Anatolian Neolithic farmers (ANFs). ENFs, including early Neolithic central European Linearbandkeramik (LBK) farming communities, also harbored ancestry from European Mesolithic hunter gatherers (WHGs) to varying extents, reflecting admixture between ENFs and WHGs. However, the timing and other details of this process are still imperfectly understood. In this report, we provide a bioarchaeological analysis of three individuals interred at the Brunn 2 site of the Brunn am Gebirge-Wolfholz archeological complex, one of the oldest LBK sites in central Europe. Two of the individuals had a mixture of WHG-related and ANF-related ancestry, one of them with approximately 50% of each, while the third individual had approximately all ANF-related ancestry. Stable carbon and nitrogen isotope ratios for all three individuals were within the range of variation reflecting diets of other Neolithic agrarian populations. Strontium isotope analysis revealed that the ~50% WHG-ANF individual was non-local to the Brunn 2 area. Overall, our data indicate interbreeding between incoming farmers, whose ancestors ultimately came from western Anatolia, and local HGs, starting within the first few generations of the arrival of the former in central Europe, as well as highlighting the integrative nature and composition of the early LBK communities.
Asunto(s)
Agricultores/psicología , Arqueología/métodos , Europa (Continente) , Migración Humana , Humanos , Estroncio/análisisRESUMEN
We present results of the largest multidisciplinary human mobility investigation to date of skeletal remains from present-day Denmark encompassing the 3rd and 2nd millennia BC. Through a multi-analytical approach based on 88 individuals from 37 different archaeological localities in which we combine strontium isotope and radiocarbon analyses together with anthropological investigations, we explore whether there are significant changes in human mobility patterns during this period. Overall, our data suggest that mobility of people seems to have been continuous throughout the 3rd and 2nd millennia BC. However, our data also indicate a clear shift in mobility patterns from around 1600 BC onwards, with a larger variation in the geographical origin of the migrants, and potentially including more distant regions. This shift occurred during a transition period at the beginning of the Nordic Bronze Age at a time when society flourished, expanded and experienced an unprecedented economic growth, suggesting that these aspects were closely related.
Asunto(s)
Migración Humana/estadística & datos numéricos , Antropología , Arqueología , Dinamarca , HumanosRESUMEN
From historical and archeological records, it is posited that the European medieval household was a combination of close relatives and recruits. However, this kinship structure has not yet been directly tested at a genomic level on medieval burials. The early 7th century CE burial at Niederstotzingen, discovered in 1962, is the most complete and richest example of Alemannic funerary practice in Germany. Excavations found 13 individuals who were buried with an array of inscribed bridle gear, jewelry, armor, and swords. These artifacts support the view that the individuals had contact with France, northern Italy, and Byzantium. This study analyzed genome-wide sequences recovered from the remains, in tandem with analysis of the archeological context, to reconstruct kinship and the extent of outside contact. Eleven individuals had sufficient DNA preservation to genetically sex them as male and identify nine unique mitochondrial haplotypes and two distinct Y chromosome lineages. Genome-wide analyses were performed on eight individuals to estimate genetic affiliation to modern west Eurasians and genetic kinship at the burial. Five individuals were direct relatives. Three other individuals were not detectably related; two of these showed genomic affinity to southern Europeans. The genetic makeup of the individuals shares no observable pattern with their orientation in the burial or the cultural association of their grave goods, with the five related individuals buried with grave goods associated with three diverse cultural origins. These findings support the idea that not only were kinship and fellowship held in equal regard: Diverse cultural appropriation was practiced among closely related individuals as well.
Asunto(s)
Cementerios , ADN Mitocondrial , Estudio de Asociación del Genoma Completo/métodos , Arqueología , Femenino , Alemania , Haplotipos , Historia Medieval , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis para Determinación del SexoAsunto(s)
Agricultura/historia , Animales , Arqueología , Productos Agrícolas , Geografía , Helianthus , Historia Antigua , Humanos , América del NorteRESUMEN
Isotopic investigations of two cemetery populations from the Corded Ware Culture in southern Germany reveal new information on the dating of these graves, human diet during this period, and individual mobility. Corded Ware Culture was present across much of temperate Europe ca. 2800-2200 cal. BC and is represented by distinctive artifacts and burial practices. Corded Ware was strongly influenced by the Yamnaya Culture that arose in the steppes of eastern Europe and western Eurasia after 3000 BC, as indicated by recent aDNA research. However, the development of CW on different chronological and spatial scales has to be evaluated. Examination of the CW burials from southern Germany supports an argument for substantial human mobility in this period. Several burials from gravefields and larger samples from two large cemeteries at Lauda-Königshofen "Wöllerspfad" and at Bergheinfeld "Hühnerberg" contributed the human remains for our study of bone and tooth enamel from the Corded Ware Culture. Our results suggest that Corded Ware groups in this region at least were subsisting on a mix of plant and animal foods and were highly mobile, especially the women. We interpret this as indicating a pattern of female exogamy, involving different groups with differing economic strategies.
Asunto(s)
Antropología Cultural , Dieta , Preferencias Alimentarias , Europa Oriental , Historia Antigua , HumanosRESUMEN
Dental enamel is currently of high informative value in studies concerning childhood origin and human mobility because the strontium isotope ratio in human dental enamel is indicative of geographical origin. However, many prehistoric burials involve cremation and although strontium retains its original biological isotopic composition, even when exposed to very high temperatures, intact dental enamel is rarely preserved in cremated or burned human remains. When preserved, fragments of dental enamel may be difficult to recognize and identify. Finding a substitute material for strontium isotope analysis of burned human remains, reflecting childhood values, is hence of high priority. This is the first study comparing strontium isotope ratios from cremated and non-cremated petrous portions with enamel as indicator for childhood origin. We show how strontium isotope ratios in the otic capsule of the petrous portion of the inner ear are highly correlated with strontium isotope ratios in dental enamel from the same individual, whether inhumed or cremated. This implies that strontium isotope ratios in the petrous bone, which practically always survives cremation, are indicative of childhood origin for human skeletal remains. Hence, the petrous bone is ideal as a substitute material for strontium isotope analysis of burned human remains.