Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanotechnology ; 26(4): 045202, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25558802

RESUMEN

Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 µm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er(3+) ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

2.
Opt Express ; 22(3): 2376-85, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663529

RESUMEN

We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cavity mode splitting is larger and smaller than the cavity mode linewidth. In both cases, coupled Q-factors up to 1600 and contrast ratios up to 10 are achieved. This design may allow for spin state readout of a self-assembled quantum dot positioned at the cavity center or function as an ultra-fast optical switch operating at the single photon level.

3.
Opt Lett ; 38(18): 3562-5, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24104814

RESUMEN

We report on the observation of optical bistability in an integrated planar microresonator with embedded silicon nanocrystals (Si-ncs). The phenomenon originates from the thermo-optical modulation of the silica-embedded Si-ncs refractive index, which in turn alters the spectral position of the resonator mode. The estimated thermo-optical coefficient of the Si nanocrystalline material, dn/dT≈2.92×10(-5)> K(-1), is an order of magnitude lower than that of bulk silicon. Both time-resolved pump-and-probe experiments and numerical simulations confirm that the silica host is responsible for the heat dissipation from the resonator. Moreover, a negligible Q-factor degradation at pump powers as high as 100 mW, along with the absence of a fast component in time-resolved measurements, confirm the minute contribution from excited carriers effects. These observations, combined with the already published large third-order nonlinearities of Si-ncs (an order of magnitude larger than in bulk Si), make this system an outstanding candidate for low-power on-chip nonlinear comb generation.

4.
Phys Rev Lett ; 110(16): 163901, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23679605

RESUMEN

We report on a theoretical and experimental study of the optical coupling between a whispering-gallery type resonator and a waveguide lying on different planes. In contrast to the usual in-plane geometry, the present vertical one is characterized by an oscillatory behavior of the effective coupling as a function of the vertical gap. This behavior manifests itself as oscillations in both the resonance peak waveguide transmission and the mode quality factor. An analytical description based on coupled-mode theory and a two-port beam-splitter model of the waveguide-resonator vertical coupling is developed for arbitrary phase-matching conditions and is successfully used to interpret the experimental observations.

5.
Nanotechnology ; 24(11): 115202, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23449309

RESUMEN

An integrated erbium-based light emitting diode has been realized in a waveguide configuration allowing 1.54 µm light signal routing in silicon photonic circuits. This injection device is based on an asymmetric horizontal slot waveguide where the active slot material is Er(3+) in SiO2 or Er(3+) in Si-rich oxide. The active horizontal slot waveguide allows optical confinement, guiding and lateral extraction of the light for on-chip distribution. Light is then coupled through a taper section to a passive Si waveguide terminated by a grating which extracts (or inserts) the light signal for measuring purposes. We measured an optical power density in the range of tens of µW/cm(2) which follows a super-linear dependence on injected current density. When the device is biased at high current density, upon a voltage pulse (pump signal), free-carrier and space charge absorption losses become large, attenuating a probe signal by more than 60 dB/cm and thus behaving conceptually as an electro-optical modulator. The integrated device reported here is the first example, still to be optimized, of a fundamental block to realize an integrated silicon photonic circuit with monolithic integration of the light emitter.

6.
Opt Express ; 20(27): 28808-18, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23263121

RESUMEN

Electrically driven Er(3+) doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er(3+) doped active layers were fabricated in the slot region: a pure SiO(2) and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er(3+) ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 µW. All these performances suggest the usage of these devices as electro-optical modulators.


Asunto(s)
Erbio/química , Refractometría/instrumentación , Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo
7.
Nanotechnology ; 23(6): 065702, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22248558

RESUMEN

We have fabricated Er doped germanium nanowires of different diameters by pulsed laser deposition and chemical methods. Er induced photoluminescence emission due to the intra-4f (4)I(13/2)→(4)I(15/2) transition of Er energy levels at 1.53 µm has been achieved at room temperature using both resonant (980 nm) and non-resonant (325 nm) excitation of Er ions. The observed 1.53 µm photoluminescence signal upon non-resonant 325 nm excitation is attributed to the Ge related oxygen deficiency centers surrounding the Ge core. For direct excitation, the infrared photoluminescence characteristics have been studied as a function of Er concentration, photon flux, and diameter of the nanowires. The Er related emission signal is found to be enhanced with increase in Er concentration, pump flux of 980 nm, and the nanowire diameter. The time resolved characteristics of the Er induced emission peak have been studied as a function of the pump flux as well as the diameter of the Ge nanowires.

8.
Nanotechnology ; 23(12): 125203, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22414783

RESUMEN

The electroluminescence (EL) at 1.54 µm of metal­oxide­semiconductor (MOS) devices withEr3C ions embedded in the silicon-rich silicon oxide (SRSO) layer has been investigated under different polarization conditions and compared with that of erbium doped SiO2 layers. EL time-resolved measurements allowed us to distinguish between two different excitation mechanisms responsible for the Er3C emission under an alternate pulsed voltage signal (APV). Energy transfer from silicon nanoclusters (Si-ncs) to Er3C is clearly observed at low-field APV excitation. We demonstrate that sequential electron and hole injection at the edges of the pulses creates excited states in Si-ncs which upon recombination transfer their energy to Er3C ions. On the contrary, direct impact excitation of Er3C by hot injected carriers starts at the Fowler­Nordheim injection threshold (above 5 MV cm(-1)) and dominates for high-field APV excitation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda