Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474981

RESUMEN

The magnetohydrodynamics (MHD) model of the alternating current (AC) arc is complex, so a simplified equivalent heat source (EHS) model can be used to replace the complex model in studying the AC arc's thermal characteristics and cable fire risk. A 2D axisymmetric AC arc MHD simulation model in the short gap of a copper-core cable is established in this paper. The AC arc voltage and current obtained by the model are consistent with experiments. The AC arc's heat source distribution obtained by the MHD model is fitted to obtain the heat source function Q of the AC arc. Q is divided into 16 independent segmented heat sources, and a correction matrix is constructed to optimize the segmented heat sources. A neural network and a genetic algorithm give the prediction model and the optimal correction matrix of the segmented heat source. The EHS model optimized by the optimal correction matrix can obtain a minimum temperature error of 5.8/4.4/4.2% with the MHD model in different AC arc peak currents 2/4/6 A. The probability of a cable fire is calculated by using AC arc's optimized EHS model when different numbers of AC arcs are generated randomly in AC half-waves. The EHS model can replace the complex MHD model to study the thermal characteristics of AC arcs and quickly calculate the probability of a cable fire caused by random AC arcs.

2.
Sci Rep ; 14(1): 4227, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379089

RESUMEN

Excessive alternating current (AC) arcs generated in electric systems will accumulate heat and easily cause fire. This paper studies the thermal characteristics of different numbers of AC arc plasma generated in a short gap of copper-cored wires in the air. The number of AC arcs is controlled in the AC arc experiment and an infrared thermal imager measures the temperature change at the specified position. Based on magnetohydrodynamics (MHD), a two-dimensional axisymmetric AC arc discharge numerical simulation model is established. The volt-ampere characteristic of the AC arc is used to solve the MHD simulation model to obtain the same 'zero current' characteristics as the real AC arc in the experiment. A large amount of heat accumulates in the electrode gaps when the arc generation, and then the heat dissipates in the 'zero current' stage. The continuously generated arc makes the temperature higher. The volume of the space area with a temperature higher than 10,000 K increases with the arc current, but is unrelated to the number of arcs. The volume of the space area with a temperature higher than 524.15 K and the temperature on the electrode are both positively correlated with the number of AC arcs and arc current. The results of this study can provide a reference for the detection standard of AC arc faults and the prevention of electrical fire.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda