Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Sci (China) ; 88: 260-272, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31862067

RESUMEN

In order to study their synergistic catalytic effects in toluene degradation, CuMn2O4/HTS-1 (HTS-1 was a titanium silicon molecular sieve), Cu0.7Mn2Y0.3Ox/HTS-1 and Cu0.7Mn2Ce0.3Ox/HTS-1 catalysts were prepared by the impregnation method. The textural properties, redox properties and acidity of the catalysts were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), frustrated total internal reflection (FT-IR), ammonium temperature-programmed desorption (NH3-TPD) and pyridine adsorption internal reflection (Py-IR) measurements. The potential roles of Lewis acid sites (activating dioxygen) were discussed, and the experimental results indicated that the most efficient route for toluene degradation over Cu0.7Mn2Ce0.3Ox/HTS-1 (toluene conversion rate of 90% (T99)=295°C) was ascribed to regulation of the synergistic effects of redox properties (activating molecular toluene) and Lewis acid sites (activating dioxygen). The Mars-Van-Krevelen (MVK) model was adopted to describe the reaction process of toluene oxidation, which gave an in-depth view into the toluene degradation over CuMn2O4/HTS-1, Cu0.7Mn2Y0.3Ox/HTS-1 and Cu0.7Mn2Ce0.3Ox/HTS-1. In addition, the synergistic effects between redox properties and Lewis acid sites were studied in detail.


Asunto(s)
Modelos Químicos , Tolueno/química , Catálisis , Cobre/química , Manganeso/química , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Titanio
3.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35055220

RESUMEN

Herein, a non-stacked γ-Fe2O3/C@TiO2 double-layer hollow nano photocatalyst has been developed with ultrathin nanosheets-assembled double shells for photodegradation phenol. High catalytic performance was found that the phenol could be completely degraded in 135 min under visible light, due to the moderate band edge position (VB at 0.59 eV and CB at -0.66 eV) of the non-stacked γ-Fe2O3/C@TiO2, which can expand the excitation wavelength range into the visible light region and produce a high concentration of free radicals (such as ·OH, ·O2-, holes). Furthermore, the interior of the hollow composite γ-Fe2O3 is responsible for charge generation, and the carbon matrix facilitates charge transfer to the external TiO2 shell. This overlap improved the selection/utilization efficiency, while the unique non-stacked double-layered structure inhibited initial charge recombination over the photocatalysts. This work provides new approaches for photocatalytic applications with γ-Fe2O3/C-based materials.

4.
J Hazard Mater ; 391: 122246, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32059162

RESUMEN

The mineralization of organic pollutants under visible light is challenging, limiting the practical application of photocatalytic technology in wastewater treatment. To achieve the efficient mineralization of Acid red 3R (AR3R), a series of honeycombed catalysts (TiO2, C-TiO2-X, Au@TiO2 and Au@C-TiO2-X) were prepared via a facile in situ synthetic method and characterized by XRD, TEM, BET, XPS and DRS, respectively. The introduction of C and Au species promote the simultaneous generation of •O2- and •OH over Au@C-TiO2-X under visible light radiation. The Au@C-TiO2-X catalyst showed superior performance for the deep mineralization of AR3R, affording a TOC removal rate larger than 90 % within 240 min under visible light (> 420 nm). The photocatalytic degradation mechanism of AR3R is proposed according to UV-vis and in situ DRIFTS analysis. The superior photocatalytic activity of Au@C-TiO2-X is attributed to the synergistic effect of •O2- and •OH owing to C doping and Au deposition.

5.
J Hazard Mater ; 357: 332-340, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29906640

RESUMEN

To achieve efficient degradation of toluene, a series of Cu1-yMn2CeyOx/sepiolite catalysts (y = 0.1, 0.2, and 0.3) with different Cu1-yMn2CeyOx loadings (10%, 20%, and 30%) were prepared via the co-precipitation method. The structure-activity and surficial elemental species of Cu1-yMn2CeyOx/sepiolite were characterized by XRD, TEM, SEM, BET, ICP-MS and XPS. The catalytic activity of the catalysts was tested in the oxidation reaction of toluene, results showed that 20%Cu0.8Mn2Ce0.2Ox/sepiolite remains able to remove toluene completely with high efficiency at a temperature of 289 °C. Two kinetic models have been selected and tested to describe the oxidation of toluene, the Mars-van krevele (MVK) model provided a good fit (R2 ≥ 0.99). And the optimal relation of the surface oxidation activation energy (26.074 kJ mol-1) and surface reduction activation energy (23.591 kJ mol-1) were calculated.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda