Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Membr Biol ; 256(2): 147-157, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36441253

RESUMEN

Glioblastoma (GBM) is a highly malignant primary brain tumor, and epidermal growth factor receptor (EGFR) is a well characterized biomaker on GBM. Treatment of GBM with EGFR inhibitors achieved limited efficacy due to low blood-brain barrier (BBB) permeability, and BBB-penetrant drugs are required. In this study, the BBB penetration of erlotinib and JN037 were studied using molecular dynamics method with explicit membrane model. The free energy profiles indicate that JCN037 has a lower central energy barrier than erlotinib, and it has a local minimum at lipid-water interface while erlotinib has not. Unconstrained MD simulations found that erlotinib prefers staying in water while JCN037 tends to interact with lipid molecules. Further analysis reveals that the Br atom of JCN037 plays an important role in its interaction with lipid molecules, and the adjacent F atom enhances the interaction of Br. The two flexible methoxyethoxy chains of erlotinib are responsible for its poor penetration. Our computational results agree well with the experimental results, providing useful information in the design and improvement of drugs with good BBB permeation.


Asunto(s)
Barrera Hematoencefálica , Glioblastoma , Humanos , Clorhidrato de Erlotinib/farmacología , Receptores ErbB , Agua , Lípidos
2.
Opt Express ; 31(3): 3743-3754, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785360

RESUMEN

The electronic spin polarization of alkali-metal-vapor atoms is a pivotal parameter for atomic magnetometers. Herein, a novel method is presented for determining the spin polarization with a miniaturized single-beam spin-exchange-relaxation-free (SERF) magnetometer on the basis of zero-field cross-over resonance. Two separate laser beams are utilized to heat the cell and interrogate the vapor atoms, respectively. Spin polarization can be extracted by measuring the resonance response signal of the magnetometer to the transverse magnetic field under different irradiances. Results of these experiments are consistent well with the theoretical predictions with the maximum deviation less than 4%. The proposed method has the integrated advantages of possessing a simple configuration and in-situ measurement. Furthermore, combined with a homemade optical differential detection system with a factor of approximately three of the power noise suppression, the developed single-beam SERF atomic magnetometer with a measuring sensitivity of 32 fT/Hz1/2 has been achieved. This demonstrated approach can help guide the development of chip-scale atomic magnetometers for bio-magnetic field imaging applications.

3.
Microsyst Nanoeng ; 10: 104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050588

RESUMEN

Hydraulic technology with smaller sizes and higher reliability trends, including fault prediction and intelligent control, requires high-performance temperature and pressure-integrated sensors. Current designs rely on planar wafer- or chip-level integration, which is limited by pressure range, chip size, and low reliability. We propose a small-size temperature/high-pressure integrated sensor via the flip-chip technique. The pressure and temperature units are arranged vertically, and the sensing signals of the two units are integrated into one plane through silicon vias and gold-gold bonding, reducing the lateral size and improving the efficiency of signal transmission. The flip-chip technique ensures a reliable electrical connection. A square diaphragm with rounded corners is designed and optimised with simulation to sense high pressure based on the piezoresistive effect. The temperature sensing unit with a thin-film platinum resistor measures temperature and provides back-end high-precision compensation, which will improve the precision of the pressure unit. The integrated chip is fabricated by MEMS technology and packaged to fabricate the extremely small integrated sensor. The integrated sensor is characterised, and the pressure sensor exhibits a sensitivity and sensitivity drift of 7.97 mV/MPa and -0.19% FS in the range of 0-20 MPa and -40 to 120 °C. The linearity, hysteresis, repeatability, accuracy, basic error, and zero-time drift are 0.16% FS, 0.04% FS, 0.06% FS, 0.18% FS, ±0.23% FS and 0.04% FS, respectively. The measurement error of the temperature sensor and temperature coefficient of resistance is less than ±1 °C and 3142.997 ppm/°C, respectively. The integrated sensor has broad applicability in fault diagnosis and safety monitoring of high-end equipment such as automobile detection, industrial equipment, and oil drilling platforms.

4.
J Mol Model ; 28(9): 261, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986192

RESUMEN

AZD3759 is an epidermal growth factor receptor inhibitor with good blood-brain barrier permeability, demonstrating encouraging activity against central nervous system metastases. However, the underlying mechanism was still unclear. In this study, the interaction between AZD3759 and membrane was studied with 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer as a model lipid. Both the cationic and neutral state of AZD3759 were considered in the simulations, and the results show that cationic AZD3759 forms more hydrogen bonds with bilayer than neutral AZD3759, and Coulombic interaction has great effects in the transmembrane process of cationic AZD3759. AZD3759 prefers to reside in the interface between the hydrophilic headgroup region and hydrophobic region of bilayer, and the chloroflurobenzene moiety plays a crucial role in the insertion of AZD3759. PMF results suggest that the hydrophobic region of DMPC bilayer is permeable by AZD3759. Understanding the transmembrane mechanism of AZD3759 at molecular level may provide useful information to the design and optimization of anti-tumor drugs with improved BBB penetration. • The penetration mechanism of AZD3759 with DMPC bilayer was studied by molecular dynamics simulations. • Neutral AZD3759 could penetrate deeper into DMPC bilayer than protonated AZD3759. • The chloroflurobenzene moiety plays a significant role in the insertion of AZD3759 into DMPC bilayer. • The electrostatic interaction is the driving force for the initial binding of AZD3759 to DMPC bilayer. • Our findings may enhance the mechanism understanding of drugs with good BBB permeability.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Sistema Nervioso Central/metabolismo , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Piperazinas , Quinazolinas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda