Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Omega ; 5(15): 8687-8696, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337431

RESUMEN

Dye-sensitized solar cells (DSSCs) are solar energy conversion devices with high efficiency and simple fabrication procedures. Developing transparent counter electrode (CE) materials for bifacial DSSCs can address the needs of window-type building-integrated photovoltaics (BIPVs). Herein, transparent organic-inorganic hybrid composite films of molybdenum disulfide and poly(3,4-ethylenedioxythiophene) (MoS2/PEDOT) are prepared to take full advantage of the conductivity and electrocatalytic ability of the two components. MoS2 is synthesized by hydrothermal method and spin-coated to form the MoS2 layer, and then PEDOT films are electrochemically polymerized on top of the MoS2 film to form the composite CEs. The DSSC with the optimized MoS2/PEDOT composite CE shows power conversion efficiency (PCE) of 7% under front illumination and 4.82% under back illumination. Compared with the DSSC made by the PEDOT CE and the Pt CE, the DSSC fabricated by the MoS2/PEDOT composite CE improves the PCE by 10.6% and 6.4% for front illumination, respectively. It proves that the transparent MoS2/PEDOT CE owes superior conductivity and catalytic properties, and it is an excellent candidate for bifacial DSSC in the application of BIPVs.

2.
J Colloid Interface Sci ; 544: 188-197, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30844567

RESUMEN

In this study, an Fe-Co alloy is coated with carbon and decorated on a holey reduced graphene oxide nanosheet (FeCo@C/HRGO) composite. The structure is synthesized using liquid-phase reduction and hydrothermal processes followed by high-temperature calcination. The FeCo@C/HRGO composite is identified and characterized using XRD, XPS, Raman spectroscopy, TEM, and SEM. This novel composite exhibits excellent electromagnetic-wave absorption properties. The maximum reflection loss for FeCo@C/HRGO reaches -76.6 dB at 16.64 GHz with a thickness of 1.7 mm. The RL below -10 dB reaches 14.32 GHz for a thickness of 1.7-5.0 mm. This confirms that microwave absorption of FeCo@C can be substantially improved upon decoration with HRGO nanosheets.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda