RESUMEN
Liquid biopsy has advantages over traditional biopsy, which cannot determine tumor dynamics. As a noninvasive and precise test, liquid biopsy detects biomarkers that carry information on tumor progression and has undergone tremendous development in recent years. Exosome detection is one of the methods of liquid biopsy. Radiotherapy affects the release of exosomes and intercellular communication. Based on the properties, extractability, and detectability of exosomes, key exosomal cargoes after tumor radiotherapy can be used as biomarkers for tumor prognosis. Exosomes after tumor radiotherapy can be used for liquid biopsy. The main applications include (1) predicting radiotherapy efficacy, (2) predicting tumor prognosis, and (3) optimizing the regimen of tumor treatment. This review provides further research directions for liquid biopsy after tumor radiotherapy.
Asunto(s)
Exosomas , Neoplasias , Biomarcadores , Biomarcadores de Tumor , Comunicación Celular , Humanos , Biopsia Líquida/métodos , Neoplasias/patologíaRESUMEN
Research on the biological role of exosomes is rapidly developing, and recent evidence suggests that exosomal effects involve ferroptosis. Exosomes derived from different tissues inhibit ferroptosis, which increases tumour cell chemoresistance. Therefore, exosome-mediated regulation of ferroptosis may be leveraged to design anticancer drugs. This review discusses three pathways of exosome-mediated inhibition of ferroptosis: (1) the Fenton reaction; (2) the ferroptosis defence system, including the Xc-GSH-GPX4 axis and the FSP1/CoQ10/NAD(P)H axis; and (3) lipid peroxidation. We also summarize three recent approaches for combining exosomes and ferroptosis in oncology therapy: (1) promoting exosome-inhibited ferroptosis to enhance chemotherapy; (2) encapsulating exosomes with ferroptosis inducers to inhibit cancers; and (3) developing therapies that combine exosomal inhibitors and ferroptosis inducers. This review will contribute toward establishing effective cancer therapies.
Asunto(s)
Antineoplásicos , Exosomas , Ferroptosis , Neoplasias , Humanos , Exosomas/patología , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Peroxidación de LípidoRESUMEN
Poor vascularization was demonstrated as a factor inhibiting bone regeneration in patients receiving radiotherapy. Various copper-containing materials have been reported to increase angiogenesis, therefore might improve bone formation. In this study, a Ti6Al4V-1.5Cu alloy was prepared using selective laser melting (SLM) technology. The immunomodulatory and pro-angiogenic effects of the Ti6Al4V-1.5Cu alloys were examined. In vitro, Ti6Al4V-1.5Cu stimulated vascular formation by restraining inflammatory factors and provoking angiogenic factors in non-irradiated and irradiated macrophages. In vivo, the angiogenic effects of the Ti6Al4V-1.5Cu alloy were confirmed using an irradiated rat femur defect model. Moreover, we found that the biological effects of the Ti6Al4V-1.5Cu alloy were partially due to the release of copper ions and associated with PI3K-Akt signaling pathway. In conclusion, this study indicated the potential of the Ti6Al4V-1.5Cu alloy to promote angiogenesis by releasing copper ions and inhibiting inflammation in normal and irradiated tissues.
Asunto(s)
Cobre , Fémur , Neovascularización Fisiológica , Titanio , Aleaciones , Animales , Cobre/farmacología , Fémur/irrigación sanguínea , Fémur/efectos de los fármacos , Fémur/efectos de la radiación , Iones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Neovascularización Fisiológica/efectos de los fármacos , Fosfatidilinositol 3-Quinasas , Ratas , Titanio/farmacologíaRESUMEN
Ionizing radiation (IR)-induced vascular disorders slow down tissue regeneration. Exosomes derived from plasma exhibit potential to promote angiogenesis; meanwhile, the immune microenvironment plays a significant role in the process. This study aimed to test the hypothesis that plasma exosomes promote angiogenesis in irradiated tissue by mediating the immune microenvironment. First, we explored the impact of IR on macrophages. We found that cell viability and capacity for promoting angiogenesis were decreased in irradiated macrophages compared to control macrophages. Then, we isolated and characterized rat plasma-derived exosomes (RP-Exos) which were defined as 40-160 nm extracellular vesicles extracted from rat plasma. Afterward, we evaluated the effects of RP-Exos on the behaviors of irradiated macrophages. Our results show that RP-Exos promoted cell proliferation. More importantly, we found that RP-Exos stimulated the immune microenvironment in a manner that improved the angiogenesis-related genes and proteins of irradiated macrophages. The supernatant of macrophage cell cultures was used as conditioned medium to treat human primary umbilical vein endothelial cells, further confirming the pro-angiogenic ability of macrophages receiving RP-Exo intervention. RP-Exos were used in vivo to treat irradiated skin or calvarial defects in irradiated Sprague-Dawley male rats. The results indicated the ability of RP-Exos to enhance angiogenesis and promote tissue regeneration. Our research suggested the potential of plasma exosomes to be used as immunomodulatory agents with angiogenic capacity to treat radiation-associated vascular disorders and facilitate tissue repair.