Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neurochem Res ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782837

RESUMEN

Phosphodiesterase 8 (PDE8), as a member of PDE superfamily, specifically promotes the hydrolysis and degradation of intracellular cyclic adenosine monophosphate (cAMP), which may be associated with pathogenesis of Alzheimer's disease (AD). However, little is currently known about potential role in the central nervous system (CNS). Here we investigated the distribution and expression of PDE8 in brain of mouse, which we believe can provide evidence for studying the role of PDE8 in CNS and the relationship between PDE8 and AD. Here, C57BL/6J mice were used to observe the distribution patterns of two subtypes of PDE8, PDE8A and PDE8B, in different sexes in vivo by western blot (WB). Meanwhile, C57BL/6J mice were also used to demonstrate the distribution pattern of PDE8 in selected brain regions and localization in neural cells by WB and multiplex immunofluorescence staining. Furthermore, the triple transgenic (3×Tg-AD) mice and wild type (WT) mice of different ages were used to investigate the changes of PDE8 expression in the hippocampus and cerebral cortex during the progression of AD. PDE8 was found to be widely expressed in multiple tissues and organs including heart, kidney, stomach, brain, and liver, spleen, intestines, and uterus, with differences in expression levels between the two subtypes of PDE8A and PDE8B, as well as two sexes. Meanwhile, PDE8 was widely distributed in the brain, especially in areas closely related to cognitive function such as cerebellum, striatum, amygdala, cerebral cortex, and hippocampus, without differences between sexes. Furthermore, PDE8A was found to be expressed in neuronal cells, microglia and astrocytes, while PDE8B is only expressed in neuronal cells and microglia. PDE8A expression in the hippocampus of both female and male 3×Tg-AD mice was gradually increased with ages and PDE8B expression was upregulated only in cerebral cortex of female 3×Tg-AD mice with ages. However, the expression of PDE8A and PDE8B was apparently increased in both cerebral cortex and hippocampus in both female and male 10-month-old 3×Tg-AD mice compared WT mice. These results suggest that PDE8 may be associated with the progression of AD and is a potential target for its prevention and treatment in the future.

2.
Metab Brain Dis ; 38(7): 2465-2476, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37256468

RESUMEN

Depression is among the most frequent psychiatric comorbid conditions in Alzheimer disease (AD). However, pharmacotherapy for depressive disorders in AD is still a big challenge, and the data on the efffcacy of current antidepressants used clinically for depressive symptoms in patients with AD remain inconclusive. Here we investigated the mechanism of the interactions between depression and AD, which we believe would aid in the development of pharmacological therapeutics for the comorbidity of depression and AD. Female APP/PS1/Tau triple transgenic (3×Tg-AD) mice at 24 months of age and age- and sex-matched wild-type (WT) mice were used. The shuttle-box passive avoidance test (PAT) were implemented to assess the abilities of learning and memory, and the open field test (OFT) and the tail suspension test (TST) were used to assess depression-like behavior. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used to detect the level of neurotransmitters related to depression in the hippocampus of mice. The data was identified by orthogonal projections to latent structures discriminant analysis (OPLS-DA). Most neurotransmitters exert their effects by binding to the corresponding receptor, so the expression of relative receptors in the hippocampus of mice was detected using Western blot. Compared to WT mice, 3×Tg-AD mice displayed significant cognitive impairment in the PAT and depression-like behavior in the OFT and TST. They also showed significant decreases in the levels of L-tyrosine, norepinephrine, vanillylmandelic acid, 5-hydroxytryptamine, and acetylcholine, in contrast to significant increases in 5-hydroxyindoleacetic acid, L-histidine, L-glutamine, and L-arginine in the hippocampus. Moreover, the expression of the alpha 1a adrenergic receptor (ADRA1A), serotonin 1 A receptor (5HT1A), and γ-aminobutyric acid A receptor subunit alpha-2 (GABRA2) was significantly downregulated in the hippocampus of 3×Tg-AD mice, while histamine H3 receptor (H3R) expression was significantly upregulated. In addition, the ratio of phosphorylated cAMP-response element-binding protein (pCREB) and CREB was significantly decreased in the hippocampus of 3×Tg-AD mice than WT mice. We demonstrated in the present study that aged female 3×Tg-AD mice showed depression-like behavior accompanied with cognitive dysfunction. The complex and diverse mechanism appears not only relevant to the imbalance of multiple neurotransmitter pathways, including the transmitters and receptors of the monoaminergic, GABAergic, histaminergic, and cholinergic systems, but also related to the changes in L-arginine and CREB signaling molecules.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Femenino , Animales , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones Transgénicos , Espectrometría de Masas en Tándem , Depresión/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Neurotransmisores/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/farmacología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda