Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bull Environ Contam Toxicol ; 110(1): 37, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607448

RESUMEN

Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum nigrum , Cadmio/análisis , Ácido Glutámico , Plomo , Ácido Cítrico , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Quelantes/farmacología , Suelo
2.
Ecotoxicol Environ Saf ; 237: 113532, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35472558

RESUMEN

Industrial production, ore smelting and sewage disposal plant can discharge large amounts of heavy metals every year, which may contaminate soil, water and air, posing a great threat to ecological environment and animal production. Hexavalent chromium [Cr (VI)], a recognized metallic contaminant, has been shown to impair kidney, liver and gastrointestinal tract of many species, but little is known about the gut microbial characteristics of chickens exposed to Cr (VI). Herein, this study characterized the gut microbial alternations of chickens exposed to Cr (VI). Results indicated that the gut microbial alpha-diversity in chickens exposed to Cr (VI) decreased significantly, accompanied by a distinct shifts in taxonomic composition. Microbial taxonomic analysis demonstrated that the preponderant phyla (Firmicutes, Bacteroidetes, Proteobacteria and Epsilonbacteraeota) were the same in both groups, but different in types and relative abundances of dominant genera. Moreover, some bacterial taxa including 2 phyla and 47 genera significantly decreased, whereas 3 phyla and 17 genera significantly increased during Cr (VI) exposure. Among decreased taxa, 9 genera (Coprobacter, Ruminococcus_1, Faecalicoccus, Eubacterium_nodatum_group, Parasutterella, Slackia, Barnesiella, Family_XIII_UCG-001 and Collinsella) even cannot be detected. In conclusion, this study revealed that Cr (VI) exposure dramatically decrased the gut microbial diversity and altered microbial composition of chickens. Additionally, this study also provided a theoretical basis for relieving Cr (VI) poisoning from the perspective of gut microbiota.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Animales , Bacteroidetes , Cromo/toxicidad , Firmicutes , Homeostasis
3.
Bull Environ Contam Toxicol ; 106(3): 507-515, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33559032

RESUMEN

Heavy metal contamination of soil is of increasing concern because of its potential risk to human health. In this study, two AMFs (Rhizophagus intraradices and Funneliformis mosseae) substantially increased the biomass of bashfulgrass in Zn-contaminated soil, even at Zn levels of up to 600 mg kg-1. Zn uptake in R. intraradices- and F. mosseae-mycorrhizal bashfulgrass was increased by 40-fold and 7-fold, respectively, when plants grown in Zn-contaminated (400 mg kg-1) soil. Elemental analysis showed that neither AMF had an effect on Zn concentration in plant tissues, including the roots and shoots. However, a significant increase of phosphorus (P) concentration was observed, suggesting the increased is from the improved use efficiency of soil nutrients by AMFs. Comparing the two AMFs, better growth performance with more biomass occurred with R. intraradices-inoculated bashfulgrass in Zn-contaminated soil. This is consistent with R. intraradices being more tolerant to Zn than F. mosseae, indicated by a higher colonization percentage in bashfulgrass roots. Taken together, our data indicate that AMFs possibly improve acquisition and translocation of P to promote increased biomass. Moreover, mycorrhiza did not enhance Zn accumulation in shoots and roots of bashfulgrass at the same Zn level. In the future, developing AMF (especially R. intraradices) inoculation of plants might be a desirable means of safe production of ornamental plants in metal-polluted soil.


Asunto(s)
Mimosa , Micorrizas , Contaminantes del Suelo , Hongos , Humanos , Fósforo , Raíces de Plantas , Suelo , Contaminantes del Suelo/toxicidad , Zinc/toxicidad
4.
Environ Sci Pollut Res Int ; 31(5): 7533-7542, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159183

RESUMEN

Biochar, as a soil amendment, can be applied to remediate heavy metal (HM) contaminated farmland. However, there is little research on the effect of tobacco biochar (TB) derived from tobacco waste on HM controlling in edible parts of vegetables. In this study, the impact of two TB levels on the plant growth, copper (Cu) and cadmium (Cd) accumulation in the edible parts of lettuce and chrysanthemum, and on Cu and Cd bioavailability of rhizosphere soil was investigated through in-situ field experiments. The results showed that TB has rich oxygen containing functional groups, high porosity, high nitrogen adsorption capacity. The addition of 5 t ha-1 and 10 t ha-1 TB significantly increased the shoot biomass of chrysanthemum, but had no effect on the growth of lettuce. Two levels of TB significantly increased the pH value, but decreased the available Cu and Cd concentrations of rhizosphere soil, thereby reducing the Cu and Cd accumulations in the edible parts of lettuce and chrysanthemum. The findings provided effective evidences that TB derived from tobacco waste is an efficient strategy for controlling Cu and Cd accumulation in the edible parts of vegetables to ensure agri-product safety production in HM-polluted farmland.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Cobre , Verduras , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbón Orgánico , Nicotiana , Suelo , Lactuca
5.
Environ Sci Pollut Res Int ; 30(10): 25755-25763, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36348238

RESUMEN

Arbuscular mycorrhizal (AM) fungi are known to have beneficial effects on host plants growing on contaminated soils. The present study aimed at investigating the influence of two different AM fungi (Rhizophagus intraradices and Funneliformis mosseae) on the growth of plants and Cu uptake by Mimosa pudica L. grown in polluted soils containing various levels of Cu (Control, 400, 500, or 600 mg kg-l soil) in pot experiments. Mycorrhizal colonisation rates by the two AM fungi decreased markedly with the increasing Cu levels in soils. This inhibition was more pronounced to F. mosseae than R. intraradices, indicating that R. intraradices was more tolerant to Cu than F. mosseae. Compared with non-mycorrhizal plants, R. intraradices inoculation increased plant growth (including shoot height, numbers of compound leaves and leaflets, and dry biomass) and P concentrations in the shoots and roots of M. pudica at all levels of Cu. Meanwhile, F. mosseae displayed a capability of growth promotion to M. pudica much later and lower than R. intraradices. F. mosseae and R. intraradices markedly decreased Cu concentration in shoots at 400-600 mg kg-1 Cu levels. However, R. intraradices was more efficient than F. mosseae in decreasing the shoot Cu concentrations. As for the increasing Cu tolerance by R. intraradices, possibly it was reached though the improvement of phosphorus nutrition and the decline of Cu transport from roots to shoots of M. pudica. R. intraradices showed a good potential for improving medicinal plants growth and declining toxic effects in Cu-contaminated soils.


Asunto(s)
Mimosa , Micorrizas , Contaminantes del Suelo , Micorrizas/fisiología , Raíces de Plantas/microbiología , Contaminación Ambiental , Suelo
6.
Chemosphere ; 334: 138857, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37187383

RESUMEN

The root tips of host plant species can establish ectomycorrhizae with their fungal partners, thereby altering the responses of the host plants to heavy metal (HM) toxicity. Here, two species of Laccaria, L. bicolor and L. japonica, were investigated in symbiosis with Pinus densiflora to study their potential for promotion of phytoremediation of HM-contaminated soils in pot experiments. The results showed that L. japonica had significantly higher dry biomass than L. bicolor in mycelia grown on modified Melin-Norkrans medium containing elevated levels of cadmium (Cd) or copper (Cu). Meanwhile, the accumulations of Cd or Cu in L. bicolor mycelia were much higher than that in L. japonica at the same level of Cd or Cu. Therefore, L. japonica displayed a stronger tolerance to HM toxicity than L. bicolor in situ. Compared with non-mycorrhizal P. densiflora seedlings, inoculation with two Laccaria species significantly increased the growth of P. densiflora seedlings in absence or presence of HM. The mantle of host roots blocked the uptake and migration of HM, which led to the decrease of Cd and Cu accumulation in the P. densiflora shoots and roots, except for the root Cd accumulation of L. bicolor-mycorrhizal plants when 25 mg kg-1 Cd exposure. Furthermore, HM distribution in mycelia showed Cd and Cu are mainly retained in the cell walls of mycelia. These results provide strong evidence that the two species of Laccaria in this system may have different strategies to assist host tree against HM toxicity.


Asunto(s)
Laccaria , Micorrizas , Pinus , Micorrizas/fisiología , Cadmio/toxicidad , Laccaria/fisiología , Cobre/toxicidad , Raíces de Plantas/microbiología
7.
Front Vet Sci ; 9: 918541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832328

RESUMEN

The gut microbial community is closely related to mastitis, but studies regarding the influences of mastitis on gut microbiota in buffalo remain scarce. Herein, we characterized the differences in gut bacterial and fungal communities between mastitis-affected and healthy buffalos. Interestingly, although mastitis had no effect on gut bacterial and fungal diversities in the buffalos, some bacterial and fungal taxa were significantly altered. Bacterial and fungal taxonomic analysis showed that the preponderant bacterial phyla (Firmicutes and Bacteroidetes) and fungal phyla (Ascomycota and Basidiomycota) in buffalo were the same regardless of health status. At the level of genus, the changes in some gut bacterial and fungal abundances between both groups were gradually observed. Compared with healthy buffalos, the proportions of 3 bacterial genera (uncultured_bacterium_f_Muribaculaceae, Eubacterium_nodatum_group, and Lachnoclostridium_10) and 1 fungal genus (Pichia) in the mastitis-affected buffalo were significantly increased, whereas 4 bacterial genera (Ruminococcus_2, Candidatus_Stoquefichus, Turicibacter, and Cellulosilyticum) and 4 fungal genera (Cladosporium, Thermothelomyces, Ganoderma and Aspergillus) were significantly decreased. Taken together, this research revealed that there was significant difference in the compositions of the gut microbial community between the healthy and mastitis-affected buffalos. To our knowledge, this is the first insight into the characteristics of the gut microbiota in buffalos with mastitis, which is beneficial to understand the gut microbial information of buffalo in different health states and elucidate the pathogenesis of mastitis from the gut microbial perspective.

8.
Environ Sci Pollut Res Int ; 27(32): 40434-40442, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32666460

RESUMEN

Conventional chemical soil amendments and novel material biochars have been widely reported for the immobilisation of cadmium (Cd) and lead (Pb) in polluted soil. However, information regarding their comparative effectiveness is poor. In the present study, rice husk biochar (RHB) was compared with two chemical soil amendments including hydroxyapatite (HAP) and hydrated lime (HDL) for their effectiveness to enhance plant growth and the reduction of Cd uptake and translocation by Triticum aestivum L. grown in heavy-metal-polluted soil. Compared with control and two chemical soil amendments, RHB rapidly improved wheat growth. The HAP, HDL, and RHB treated plants retained Cd and Pb in roots and restricted their translocation. The RHB treatment had the best effect on growth, yield promotion and the reduction of Cd and Pb in wheat grain. Furthermore, the soils treated with RHB and HAP showed lower DTPA-extracted Cd concentrations, and the maximum reduction was observed in HAP-amended soil. However, the DTPA-extracted Pb concentration was not significantly decreased after the application of two chemical soil amendments for 40 days; the maximum reduction was found in soil treated with RHB for 80 days. In all treatments, Cd in post-harvest soil was mainly present in exchangeable, carbonate bound, and Fe-Mn oxide Cd, while the dominant chemical form of Pb was Fe-Mn oxide Pb. Three soil amendments application decreased exchangeable and organic bound- Cd and Pb levels. HAP and RHB displayed significantly immobilisation for soil Cd and reduced translocation of heavy metal as well as its availability in soil, but the HAP had significant inhibition on growth of wheat in contaminated soil. Therefore, RHB shows a promising potential for the reduction of Cd and Pb bioaccumulation in grains from wheat grown on heavy-metal-polluted soils.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Carbón Orgánico , Plomo , Suelo , Contaminantes del Suelo/análisis , Triticum
9.
Sci Total Environ ; 444: 263-70, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23274245

RESUMEN

In this study, a novel experimental setup (one pot placed above another) was used to investigate the residual effects of EDDS application on plant growth and metal uptake. Two plant species, garland chrysanthemum and ryegrass, were grown in the upper pots (mimicking the upper soil layers) and were harvested 7 days after EDDS application. During this period the upper pots were watered twice. The lower pots (mimicking the subsoil under the upper soil layers) served as leachate collectors. Thereafter, the two pots were separated, and the same plants were grown in the upper and lower pots in two continuous croppings. Results showed that EDDS application restrained the growth of the first crop and resulted in a dramatic enhancement of Cu accumulation in plants grown in the upper pots. However, no negative growth effects were identified for the second and third crops, which were harvested 81 and 204 days after the EDDS application, respectively. In the lower pots, the leachate from the upper pots after EDDS application exhibited the increased total and CaCl(2)-extractable Cu concentrations in the soil. However, the growth of garland chrysanthemum and ryegrass, and their shoot Cu concentrations were unaffected. These data suggest that the residual risk associated with EDDS application was limited, and that subsoil to which EDDS leachate was applied may exhibit reduced Cu bioavailability for plants due to the biodegradation of EDDS.


Asunto(s)
Biodegradación Ambiental , Chrysanthemum/efectos de los fármacos , Cobre , Etilenodiaminas/farmacología , Lolium/efectos de los fármacos , Contaminantes del Suelo , Succinatos/farmacología , Chrysanthemum/crecimiento & desarrollo , Chrysanthemum/metabolismo , Cobre/análisis , Cobre/farmacocinética , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda