Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2302910120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579143

RESUMEN

Gene editing in the brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches mainly rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.


Asunto(s)
Encéfalo , Edición Génica , Encéfalo/diagnóstico por imagen , Barrera Hematoencefálica , Transporte Biológico , Microburbujas
2.
Nano Lett ; 23(3): 757-764, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36648291

RESUMEN

Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.


Asunto(s)
Ácidos Borónicos , Quitosano , Animales , Ratones , Polímeros , Técnicas de Transferencia de Gen
3.
Nano Lett ; 21(6): 2461-2469, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686851

RESUMEN

Circulating cell-free DNA (cfDNA) released by damaged cells causes inflammation and has been associated with the progression of sepsis. One proposed strategy to treat sepsis is to scavenge this inflammatory circulating cfDNA. Here, we develop a cfDNA-scavenging nanoparticle (NP) that consists of cationic polyethylenimine (PEI) of different molecular weight grafted to zeolitic imidazolate framework-8 (PEI-g-ZIF) in a simple one-pot process. PEI-g-ZIF NPs fabricated using PEI 1800 and PEI 25k but not PEI 600 suppressed cfDNA-induced TLR activation and subsequent nuclear factor kappa B pathway activity. PEI 1800-g-ZIF NPs showed greater inhibition of cfDNA-associated inflammation and multiple organ injury than naked PEI 1800 (lacking ZIF), and had greater therapeutic efficacy in treating sepsis. These results indicate that PEI-g-ZIF NPs acts as a "nanotrap" that improves upon naked PEI in scavenging circulating cfDNA, reducing inflammation, and reversing the progression of sepsis, thus providing a novel strategy for sepsis treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Estructuras Metalorgánicas , Nanopartículas , Sepsis , Humanos , Polietileneimina , Sepsis/tratamiento farmacológico
4.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30773888

RESUMEN

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Células Madre Mesenquimatosas/química , Esferoides Celulares/trasplante , Ingeniería Celular/tendencias , Movimiento Celular/efectos de los fármacos , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patología , Humanos , Células Madre Mesenquimatosas/citología , Nanomedicina/tendencias , Esferoides Celulares/química , Tropismo Viral/efectos de los fármacos
5.
Res Sq ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36712096

RESUMEN

Gene editing in the mammalian brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.

6.
ACS Nano ; 16(12): 20430-20444, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36382718

RESUMEN

Photothermal therapy (PTT) is an effective treatment modality that is highly selective for tumor suppression and is a hopeful alternative to traditional cancer therapy. However, PTT-induced inflammatory responses may result in undesirable side effects including increased risks of tumor recurrence and metastasis. Here we developed multifunctional MnO nanoparticles as scavengers of proinflammatory molecules to alleviate the PTT-induced inflammatory response. The MnO nanoparticles improve the PTT therapy by (1) binding and scavenging proinflammatory molecules to inhibit the proinflammatory molecule-induced Toll-like receptors (TLR) activation and nuclear factor kappa B (NF-κB) signaling; (2) inhibiting activated macrophage-induced macrophage recruitment; and (3) inhibiting tumor cell migration and invasion. In vivo experimental results showed that further treatment with MnO nanoparticles after laser therapy not only inhibited the PTT-induced inflammatory response and primary tumor recurrence but also significantly reduced tumor metastasis due to the scavenging activity. These findings suggest that MnO nanoparticles hold the potential for mitigating the therapy-induced severe inflammatory response and inhibiting tumor recurrence and metastasis.


Asunto(s)
Neoplasias de la Mama , Nanopartículas Multifuncionales , Nanopartículas , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Nanopartículas/química , Recurrencia Local de Neoplasia , Fototerapia/métodos , Recurrencia , Inflamación
7.
Nat Commun ; 13(1): 5925, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207325

RESUMEN

Periodontitis is a common type of inflammatory bone loss and a risk factor for systemic diseases. The pathogenesis of periodontitis involves inflammatory dysregulation, which represents a target for new therapeutic strategies to treat periodontitis. After establishing the correlation of cell-free DNA (cfDNA) level with periodontitis in patient samples, we test the hypothesis that the cfDNA-scavenging approach will benefit periodontitis treatment. We create a nanoparticulate cfDNA scavenger specific for periodontitis by coating selenium-doped hydroxyapatite nanoparticles (SeHANs) with cationic polyamidoamine dendrimers (PAMAM-G3), namely G3@SeHANs, and compare the activities of G3@SeHANs with those of soluble PAMAM-G3 polymer. Both G3@SeHANs and PAMAM-G3 inhibit periodontitis-related proinflammation in vitro by scavenging cfDNA and alleviate inflammatory bone loss in a mouse model of ligature-induced periodontitis. G3@SeHANs also regulate the mononuclear phagocyte system in a periodontitis environment, promoting the M2 over the M1 macrophage phenotype. G3@SeHANs show greater therapeutic effects than PAMAM-G3 in reducing proinflammation and alveolar bone loss in vivo. Our findings demonstrate the importance of cfDNA in periodontitis and the potential for using hydroxyapatite-based nanoparticulate cfDNA scavengers to ameliorate periodontitis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Dendrímeros , Periodontitis , Selenio , Animales , Ácidos Nucleicos Libres de Células/genética , Dendrímeros/farmacología , Hidroxiapatitas , Ratones , Periodontitis/tratamiento farmacológico
8.
Bioeng Transl Med ; 5(1): e10152, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31989039

RESUMEN

For patients carrying BRCA1 mutations, at least one-third develop triple negative breast cancer (TNBC). Not only is TNBC difficult to treat due to the lack of molecular target receptors, but BRCA1 mutations (BRCA1m) also result in chemotherapeutic resistance, making disease recurrence more likely. Although BRCA1m are highly heterogeneous and therefore difficult to target, BRCA1 gene's synthetic lethal pair, PARP1, is conserved in BRCA1m cancer cells. Therefore, we hypothesize that targeting PARP1 might be a fruitful direction to sensitize BRCA1m cancer cells to chemotherapy. We used CRISPR/Cas9 technology to generate PARP1 deficiency in two TNBC cell lines, MDA-MB-231 (BRCA1 wild-type) and MDA-MB-436 (BRCA1m). We explored whether this PARP1 disruption (PARP1m) could significantly lower the chemotherapeutic dose necessary to achieve therapeutic efficacy in both a 2D and 3D tumor-on-a-chip model. With both BRCA1m and PARP1m, the TNBC cells were more sensitive to three representative chemotherapeutic breast cancer drugs, doxorubicin, gemcitabine and docetaxel, compared with the PARP1 wild-type counterpart in the 2D culture environment. However, PARP1m did not result in this synergy in the 3D tumor-on-a-chip model, suggesting that drug dosing in the tumor microenvironment may influence the synergy. Taken together, our results highlight a discrepancy in the efficacy of the combination of PARP1 inhibition and chemotherapy for TNBC treatment, which should be clarified to justify further clinical testing.

9.
Acta Biomater ; 3(5): 643-50, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17532276

RESUMEN

We have designed a novel dual-functional electrospun fibrous scaffold comprising two fiber mesh layers that were modified differently to induce two separate biological responses from hepatocytes. The first fiber layer was galactosylated on the surface to mediate hepatocyte attachment, while the second layer was loaded with 3-methylcholanthrene (3-Mc) to enhance cytochrome P450 activity of hepatocytes. Primary rat hepatocytes cultured on the galactosylated fibrous scaffolds loaded with different concentrations of 3-Mc were compared for their cell attachment efficiency, albumin secretion activity and cytochrome P450-dependent 7-ethoxycoumarin O-deethylase activity. This hybrid fibrous scaffold mediated hepatocyte attachment with slightly lower efficiency (76+/-2.3%) than a single-layer galactosylated fibrous scaffold (84+/-3.5%). More importantly, the cytochrome P450 activity of the hepatocytes cultured on the hybrid scaffold correlated well with the 3-Mc loading level. The results also showed that transfer of 3-Mc to hepatocytes through direct cell-fiber contact was the dominant transport route, with the induced cytochrome P450 activity being 1.9- to 4.8-fold higher than that of transfer of 3-Mc to hepatocytes via dissolution from fibers to medium. This study demonstrates the feasibility of creating multi-functional fibrous scaffolds that serve both as an adhesive substrate and as a delivery vehicle for bioactive molecules.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Galactosa/administración & dosificación , Hepatocitos/citología , Hepatocitos/enzimología , Metilcolantreno/administración & dosificación , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Galactosa/química , Hepatocitos/efectos de los fármacos , Masculino , Ensayo de Materiales , Metilcolantreno/química , Ratas , Ratas Wistar
10.
Chem Commun (Camb) ; (35): 4459-61, 2005 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16136250

RESUMEN

The bicontinuous microemulsions consisting of a polymerisable zwitterionic surfactant 3-((11-acryloyloxyundecyl)imidazolyl) propyl sulfonate (AIPS) and other monomers can be cross-polymerised to form good proton conductive membranes.

11.
J Biotechnol ; 117(4): 355-65, 2005 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15925718

RESUMEN

A new class of microcapsules was prepared under physiological conditions by polyelectrolyte complexation between two oppositely-charged, water-soluble polymers. The microcapsules consisted of an inner core of half N-acetylated chitosan and an outer shell of methacrylic acid (MAA) (20.4%)-hydroxyethyl methacrylate (HEMA) (27.4%)-methyl methacrylate (MMA) (52.2%) (MAA-HEMA-MMA) terpolymer. Both 400 and 150 kDa half N-acetylated chitosans maintained good water solubility and supplied enough protonated amino groups to coacervate with terpolymer at pH 7.0-7.4, in contrast to other chitosan-based microcapsules which must be prepared at pH <6.5. The viscosity of half N-acetylated chitosan solutions between 80 and 3000 cPas allowed the formation of microcapsules with spherical shape. Molar mass, pH and concentration of half N-acetylated chitosan, and reaction time, influenced the morphology, thickness and porosity of the microcapsules. Microcapsules formed with high concentration of half N-acetylated chitosan exhibited improved mechanical stability, whereas microcapsules formed with low concentration of half N-acetylated chitosan exhibited good permeability. This 3D microenvironment has been configured to cultivate sensitive anchorage-dependent cells such as hepatocytes to maintain high level of functions.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Quitosano/química , Hepatocitos/citología , Hepatocitos/fisiología , Ácidos Polimetacrílicos/química , Ingeniería de Tejidos/métodos , Agua/química , Animales , Células Cultivadas , Masculino , Ensayo de Materiales , Microesferas , Tamaño de la Partícula , Permeabilidad , Ratas , Ratas Wistar , Solubilidad , Resistencia a la Tracción
12.
J Biotechnol ; 118(4): 434-47, 2005 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-16026880

RESUMEN

Tissue engineering involves ex vivo seeding of anchorage-dependent mammalian cells onto scaffolds, or transplanting cells in vivo. The cell expansion currently requires repeated cell detachment from solid substrata by enzymatic, chemical or mechanical means. The report here presents a high yield three-dimensional culture and harvest system circumventing the conventional detachment requirements. Cells mixed with dilute cationic collagen were microencapsulated within an ultra-thin shell of synthetic polymers. The cationic collagen could rapidly form a conformal layer of collagen fibers around cells to support cell proliferation and functions. The collagen could be readily removed from cells with a buffer rinse after harvesting from the fragile microcapsules. The cells harvested from this system demonstrate improved attachment, morphology and functions over conventionally cultured cells, upon binding to ligand-conjugated polymer surfaces. The harvested cells can be re-encapsulated and allowed to proliferate again, or used immediately in applications.


Asunto(s)
Proliferación Celular , Colágeno , Animales , Técnicas de Cultivo de Célula/métodos , Composición de Medicamentos/métodos , Humanos , Células PC12 , Ratas
13.
Biomaterials ; 25(17): 3531-40, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15020127

RESUMEN

New anionic polyelectrolyte tetra-copolymers with photo-crosslinkable 4-(4-methoxycinnamoyl)phenyl methacrylate monomer in addition to a HEMA-MMA-MAA ter-copolymer system were synthesized. The tetra-copolymers were used to form photo-crosslinkable microcapsules with modified collagen by complex coacervation for rat hepatocytes encapsulation. The hepatocytes were encapsulated within a two-layered membrane comprising of modified collagen as the inner core and an outer photo-crosslinkable copolymer shell. Upon photo-crosslinking of the microcapsules with UV-Vis light irradiation, the mechanical strength and chemical stability of the microcapsules, and the cellular functions of the encapsulated hepatocytes were enhanced. Particularly, the mechanical stability of the microcapsules was dramatically strengthened. The new photo-crosslinkable tetra-copolymer formulation described in this article has opened a way to the development of hepatocyte microencapsulation technology for bioartifical liver assist device.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colágeno/química , Hepatocitos/citología , Hepatocitos/fisiología , Metacrilatos/química , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Trasplante de Células/instrumentación , Trasplante de Células/métodos , Células Cultivadas , Reactivos de Enlaces Cruzados/efectos de la radiación , Electrólitos/química , Hepatocitos/trasplante , Luz , Masculino , Ensayo de Materiales , Metacrilatos/efectos de la radiación , Microesferas , Peso Molecular , Fotoquímica/métodos , Porosidad , Ratas , Ratas Wistar , Urea/metabolismo
14.
Tissue Eng ; 9 Suppl 1: S65-75, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14511471

RESUMEN

We previously encapsulated hepatocytes in ultrathin shell microcapsules and showed them to have enhanced differentiated functions over cells cultured in monolayer. Here we have used these microencapsulated hepatocytes in a bioartificial liver-assisted device (BLAD) with a rat hepatectomy model. Primary rat hepatocytes were encapsulated in 150- to 200-microm microcapsules, using an electrostatic droplet generator. The microencapsulated hepatocytes exhibited good in vitro urea synthesis activity in plasma from rats with fulminant hepatic failure (FHF). The ex vivo hemoperfusion was conducted in FHF rats by perfusing plasma at a rate of 1-2 mL/min through 1.5-2 x 10(8) encapsulated hepatocytes packed into a packed-bed bioreactor. Hemoperfusion with the bioreactor was initiated 5 h after operative induction of liver failure and continued for 7 h. The BLAD-treated rats showed improvements over the control groups in survival time and metabolic indicators, including ammonia and total bilirubin levels. Furthermore, expanded bed adsorption (EBA) detoxification technology using Streamline-SP resin was explored to complement the bioreactor with microencapsulated hepatocytes. In vitro experiments indicated that serum ammonia could be specifically removed in dose-dependent manner, whereas the total serum proteins were unaffected by the resin. In ex vivo experiments, hemoperfusion with the resin was initiated 3 h after operative induction of liver failure and continued for 7 h. The resin-treated rats showed obvious serum ammonia removal with no observable total blood protein and blood cell adsorption. Therefore, Streamline-SP resin can potentially be integrated into a BLAD for improved efficacy.


Asunto(s)
Cápsulas , Hepatocitos/metabolismo , Ingeniería de Tejidos , Amoníaco/metabolismo , Animales , Bilirrubina/metabolismo , Fallo Hepático/terapia , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
15.
J Nanosci Nanotechnol ; 3(3): 235-40, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-14503408

RESUMEN

Nanosized polystyrene (PS) latexes stabilized by the mixture of cationic/cationic, anionic/anionic, or anionic/cationic surfactants of various types with high weight ratios of PS to surfactant (ca. 10:1) have been successfully synthesized by a semicontinuous microemulsion polymerization process. For cationic or anionic systems, spherical latex particles with a weight-averaged diameter (Dw) ranging from about 22 to 53 nm were nearly linearly dependent on the weight ratio of the mixed surfactants with similar charges. Their particle size distributions were rather uniform (Dw/Dn < 1.20). For a system with oppositely charged surfactants at nonequimolar ratios, it could produce stable PS particles up to 94 nm in diameter. High molar masses (Mw) of PS ranging from 1.1 to 1.9 x 10(6) g/mol could easily be obtained for all three systems investigated. For both cationic/cationic and anionic/anionic surfactant systems, the number of PS particles per milliliter of latex (Np) generated in the very early stage of O/W' microemulsion remained rather constant throughout the polymerization. This was controlled by using only 1 wt% of mixed surfactants and the continuous addition of a small amount of styrene. The present polymerization method allows one to synthesize nanoparticles of PS or other polymers of high polymer/surfactant weight ratios at some particle sizes that are unable to achieve them with a single type of surfactant.


Asunto(s)
Nanotecnología/métodos , Poliestirenos/aislamiento & purificación , Emulsiones , Microscopía Electrónica , Peso Molecular , Tamaño de la Partícula , Tensoactivos
16.
Nanomaterials (Basel) ; 2(2): 92-112, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28348298

RESUMEN

Near-infrared (NIR) fluorescent probes offer advantages of high photon penetration, reduced light scattering and minimal autofluorescence from living tissues, rendering them valuable for noninvasive mapping of molecular events, assessment of therapeutic efficacy, and monitoring of disease progression in animal models. This review provides an overview of the recent development of the design and optical property of the different classes of NIR fluorescent nanoprobes associated with in vivo imaging applications.

17.
Electrophoresis ; 25(20): 3416-21, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15490447

RESUMEN

Collagen methylation has been exploited in various applications involving living cells. We have observed correlation between the collagen methylation with the rate of cell proliferation in three-dimensional (3-D) microenvironment. To quantify the degree of collagen methylation, we have developed a capillary zone electrophoresis method. Using a polyvinyl alcohol-coated fused-silica capillary and UV detection at 200 nm, we have optimized pH and separated the native collagen into three major bands in phosphate buffer (50 mM, pH 2.5) with 0.05% hydroxypropylmethylcellulose. Under these conditions, the methylated collagens were separated into four major bands, which changed with different methylation reaction conditions. We propose an index to quantify the degree of collagen methylation that also correlates with their effects on cell proliferation.


Asunto(s)
Colágeno/análisis , Electroforesis Capilar , Animales , Tampones (Química) , Línea Celular Tumoral , Proliferación Celular , Colágeno/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metilación , Procesamiento Proteico-Postraduccional , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda