Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
PLoS Pathog ; 20(7): e1012039, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950065

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y453F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed.

2.
Emerg Infect Dis ; 29(12): 2559-2561, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37885051

RESUMEN

We analyzed wastewater samples from 14 aircraft arriving in Denmark directly from China during January 9-February 12, 2023. Wastewater from 11 aircraft was SARS-CoV-2-positive by PCR; 6 predominantly contained BQ.1 and XBB.1 subvariants. Wastewater-based surveillance can contribute to public health monitoring of SARS-CoV-2 and other emerging infectious agents.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Aguas Residuales , China/epidemiología , Aeronaves , Dinamarca/epidemiología
3.
Euro Surveill ; 28(36)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676147

RESUMEN

We describe 10 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant BA.2.86 detected in Denmark, including molecular characteristics and results from wastewater surveillance that indicate that the variant is circulating in the country at a low level. This new variant with many spike gene mutations was classified as a variant under monitoring by the World Health Organization on 17 August 2023. Further global monitoring of COVID-19, BA.2.86 and other SARS-CoV-2 variants is highly warranted.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Dinamarca/epidemiología
4.
Heliyon ; 10(9): e29703, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694057

RESUMEN

Wastewater sequencing has become a powerful supplement to clinical testing in monitoring SARS-CoV-2 infections in the post-COVID-19 pandemic era. While its applications in measuring the viral burden and main circulating lineages in the community have proved their efficacy, the variations in sequencing quality and coverage across the different regions of the SARS-CoV-2 genome are not well understood. Furthermore, it is unclear how different sample origins, viral extraction and concentration methods and environmental factors impact the reads sequenced from wastewater. Using high-coverage, amplicon-based, paired-end read sequencing of viral RNA extracted from wastewater collected directly from aircraft, pooled from different aircraft and airport buildings or from regular wastewater plants, we assessed the genome coverage across the sample groups with a focus on the 5'-end region covering the leader sequence and investigated whether it was possible to detect subgenomic RNA from viral material recovered from wastewater. We identified distinct patterns in the persistence of the different genomic regions across the different types of wastewaters and the existence of chimeric reads mapping to non-amplified regions. Our findings suggest that preservation of the 5'-end of the genome and the ability to detect subgenomic RNA reads, though highly susceptible to environment and sample processing conditions, may be indicative of the quality and amount of the viral RNA present in wastewater.

5.
Water Res ; 252: 121223, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310802

RESUMEN

The microbiological analysis of wastewater samples is increasingly used for the surveillance of SARS-CoV-2 globally. We described the setup process of the national SARS-CoV-2 wastewater-based surveillance system in Denmark, presented its main results during the first year of activities, from July 2021 to June 2022, and discussed their operational significance. The Danish SARS-CoV-2 wastewater-based surveillance system was designed to cover 85 % of the population in Denmark and it entailed taking three weekly samples from 230 sites. Samples were RT-qPCR tested for SARS-CoV-2 RNA, targeting the genetic markers N1, N2 and RdRp, and for two faecal indicators, Pepper Mild Mottle Virus and crAssphage. We calculated the weekly SARS-CoV-2 RNA concentration in the wastewater from each sampling site and monitored it in view of the results from individual testing, at the national and regional levels. We attempted to use wastewater results to identify potential local outbreaks, and we sequenced positive wastewater samples using Nanopore sequencing to monitor the circulation of viral variants in Denmark. The system reached its full implementation by October 2021 and covered up to 86.4 % of the Danish population. The system allowed for monitoring of the national and regional trends of SARS-CoV-2 infections in Denmark. However, the system contribution to the identification of potential local outbreaks was limited by the extensive information available from clinical testing. The sequencing of wastewater samples identified relevant variants of concern, in line with results from sequencing of human samples. Amidst the COVID-19 pandemic, Denmark implemented a nationwide SARS-CoV-2 wastewater-based surveillance system that integrated routine surveillance from individual testing. Today, while testing for COVID-19 at the community level has been discontinued, the system is on the frontline to monitor the occurrence and spread of SARS-CoV-2 in Denmark.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Prueba de COVID-19 , Pandemias , ARN Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Dinamarca/epidemiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda