Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Dairy Res ; 90(2): 111-117, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37039499

RESUMEN

The experiments reported in this research paper address the effects of replacing ground corn (GC) with full-fat corn germ (FFCG) on nutrient intake and digestibility, nitrogen utilization efficiency, performance, and predicted methane production in dairy cows fed cactus cladodes and sugarcane. We hypothesized that the inclusion of FFCG in the diet would not alter the performance of lactating cows but would reduce the predicted methane production in vivo. Ten multiparous Holstein cows at 90 ± 10 d of lactation and yielding 24.2 ± 3.5 kg milk/d were assigned to dietary treatments consisting of different levels of replacement of GC by FFCG (0; 25; 50; 75 and 100% of diet dry matter) in a replicated 5 × 5 Latin square design with 21-d periods. Methane production was predicted using an automated gas in vitro production system. Except for ether extract intake, which increased, the intake of all nutrients decreased linearly with the replacement of GC by FFCG. The digestibility of dry matter, organic matter and neutral detergent fiber reduced, whereas the digestibility of ether extract increased linearly with FFCG. There were no changes in the digestibility of crude protein. The nitrogen intake and daily excretion in urine and feces decreased, while nitrogen use efficiency increased linearly. There was no significant effect of diets on nitrogen balance or microbial protein synthesis and efficiency. The yield of protein, lactose and total solids in milk showed a quadratic behavior. On the other hand, milk fat yield and energy-corrected milk yield decreased linearly with the replacement of GC by FFCG. No effect on pH or ammonia nitrogen was observed. The production of methane (CH4, g/kg DM) and total CH4 (g/d), and CH4 intensity decreased linearly with the replacement of GC by FFCG. In conclusion, FFCG has been shown to be an effective source of fat to reduce methane production in dairy cows, partially supporting our initial hypothesis. However, as it decreases milk fat production, it is not recommended to replace more than 50% of GC by FFCG for lactating cows fed cactus cladodes and sugarcane.


Asunto(s)
Lactancia , Zea mays , Femenino , Bovinos , Animales , Zea mays/metabolismo , Digestión , Ensilaje/análisis , Fibras de la Dieta/metabolismo , Leche/metabolismo , Dieta/veterinaria , Metano/metabolismo , Nitrógeno/metabolismo , Extractos Vegetales , Rumen
2.
Animals (Basel) ; 12(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36428409

RESUMEN

We aimed to evaluate the effect of the cactus cladodes Nopalea cochenillifera (L). Salm-Dyck. (NUB) and cactus cladodes Opuntia stricta (Haw.) Haw. (OUB), both combined with sugarcane bagasse (SB) plus urea, Tifton hay (TH), corn silage (CS), and sorghum silage (SS) plus urea on nutrient intake and digestibility, ruminal dynamics, and parameters. Five male sheep, fistulated in the rumen, were assigned in a 5 × 5 Latin square design. The NUB provided a higher intake of dry matter (DM) and any nutrients than SS. TH provided larger pools of DM and iNDF. The OUB and CS provided a higher DM degradation. CS provided a higher NDF degradation rate. OUB provided a lower ruminal pH. Depending on the collection time, the lowest pH value was estimated at 3.79 h after the morning feeding. There was an interaction between treatments and collection time on VFA concentrations. Due to the high degradation rate, greater energy intake, less change in rumen pH, greater volatile fatty acid production, and feasibility, we recommend using cactus associated with sugarcane bagasse plus urea in sheep diets.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda