Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Pathogens ; 13(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38392902

RESUMEN

COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.

2.
Zoology (Jena) ; 117(5): 319-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25160003

RESUMEN

Whereas in all other vertebrates the Müllerian ducts of genetic males are aborted during development, under the influence of Müllerian-inhibiting substance, in the caecilian amphibians they are retained as a pair of functional glands. It has long been speculated that the Müllerian gland might be the male accessory reproductive gland but there has been no direct evidence to this effect. The present study was undertaken to determine whether the caecilian Müllerian gland secretory proteins would bear antigenic similarity to secretory proteins of the prostate gland and/or the seminal vesicles of a mammal. The secretory proteins of the Müllerian gland of Ichthyophis tricolor were evaluated for cross-reactivity with antisera raised against rat ventral prostate and seminal vesicle secretory proteins, adopting SDS-PAGE, two-dimensional electrophoresis and immunoblot techniques. Indeed there was a cross-reaction of five Müllerian gland secretory protein fractions with prostatic protein antiserum and of three with seminal vesicle protein antiserum. A potential homology exists because in mammals the middle group of the prostate primordia is derived from a diverticulum of the Müllerian duct. Thus this study, by providing evidence for expression of prostatic and seminal vesicle proteins in the Müllerian gland, substantiates the point that in caecilians the Müllerian glands are the male accessory reproductive glands.


Asunto(s)
Anfibios/anatomía & histología , Anfibios/metabolismo , Glándulas Exocrinas/fisiología , Animales , Glándulas Exocrinas/anatomía & histología , Glándulas Exocrinas/metabolismo , Sueros Inmunes/metabolismo , Immunoblotting , Masculino , Próstata/metabolismo , Ratas , Vesículas Seminales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda