Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 146(8): 5580-5596, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38347659

RESUMEN

Under mild blue-light irradiation, α-acylated saturated heterocycles undergo a photomediated one-atom ring contraction that extrudes a heteroatom from the cyclic core. However, for nitrogenous heterocycles, this powerful skeletal edit has been limited to substrates bearing electron-withdrawing substituents on nitrogen. Moreover, the mechanism and wavelength-dependent efficiency of this transformation have remained unclear. In this work, we increased the electron richness of nitrogen in saturated azacycles to improve light absorption and strengthen critical intramolecular hydrogen bonding while enabling the direct installation of the photoreactive handle. As a result, a broadly expanded substrate scope, including underexplored electron-rich substrates and previously unsuccessful heterocycles, has now been achieved. The significantly improved yields and diastereoselectivities have facilitated reaction rate, kinetic isotope effect (KIE), and quenching studies, in addition to the determination of quantum yields. Guided by these studies, we propose a revised ET/PT mechanism for the ring contraction, which is additionally corroborated by computational characterization of the lowest-energy excited states of α-acylated substrates through time-dependent DFT. The efficiency of the ring contraction at wavelengths longer than those strongly absorbed by the substrates was investigated through wavelength-dependent rate measurements, which revealed a red shift of the photochemical action plot relative to substrate absorbance. The elucidated mechanistic and photophysical details effectively rationalize empirical observations, including additive effects, that were previously poorly understood. Our findings not only demonstrate enhanced synthetic utility of the photomediated ring contraction and shed light on mechanistic details but may also offer valuable guidance for understanding wavelength-dependent reactivity for related photochemical systems.

2.
Anal Chem ; 94(12): 4913-4918, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35290016

RESUMEN

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry is an ambient-direct sampling method that is being developed for high-throughput, label-free, biochemical screening of large-scale compound libraries. Here, we report the development of an ultra-high-throughput continuous motion IR-MALDESI sampling approach capable of acquiring data at rates up to 22.7 samples per second in a 384-well microtiter plate. At top speed, less than 1% analyte carryover is observed from well-to-well, and signal intensity relative standard deviations (RSD) of 11.5% and 20.9% for 3 µM 1-hydroxymidazolam and 12 µM dextrorphan, respectively, are achieved. The ability to perform parallel kinetics studies on 384 samples with a ∼30 s time resolution using an isocitrate dehydrogenase 1 (IDH1) enzyme assay is shown. Finally, we demonstrate the repeatability and throughput of our approach by measuring 115200 samples from 300 microtiter plate reads consecutively over 5.54 h with RSDs under 8.14% for each freshly introduced plate. Taken together, these results demonstrate the use of IR-MALDESI at sample acquisition rates that surpass other currently reported direct sampling mass spectrometry approaches used for high-throughput compound screening.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Pruebas de Enzimas , Rayos Láser , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Anal Chem ; 94(39): 13566-13574, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36129783

RESUMEN

Mass spectrometry (MS) is the primary analytical tool used to characterize proteins within the biopharmaceutical industry. Electrospray ionization (ESI) coupled to liquid chromatography (LC) is the current gold standard for intact protein analysis. However, inherent speed limitations of LC/MS prevent analysis of large sample numbers (>1000) in a day. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI-MS), an ambient ionization MS technology, has recently been established as a platform for high-throughput small molecule analysis. Here, we report the applications of such a system for the analysis of intact proteins commonly performed within the drug discovery process. A wide molecular weight range of proteins 10-150 kDa was detected on the system with improved tolerance to salts and buffers compared to ESI. With high concentrations and model proteins, a sample rate of up to 22 Hz was obtained. For proteins at low concentrations and in buffers used in commonly employed assays, robust data at a sample rate of 1.5 Hz were achieved, which is ∼22× faster than current technologies used for high-throughput ESI-MS-based protein assays. In addition, two multiplexed plate-based high-throughput sample cleanup methods were coupled to IR-MALDESI-MS to enable analysis of samples containing excessive amounts of salts and buffers without fully compromising productivity. Example experiments, which leverage the speed of the IR-MALDESI-MS system to monitor NISTmAb reduction, protein autophosphorylation, and compound binding kinetics in near real time, are demonstrated.


Asunto(s)
Productos Biológicos , Espectrometría de Masa por Ionización de Electrospray , Descubrimiento de Drogas , Rayos Láser , Proteínas/química , Sales (Química) , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
4.
Anal Chem ; 93(17): 6792-6800, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885291

RESUMEN

Mass spectrometry (MS) can provide high sensitivity and specificity for biochemical assays without the requirement of labels, eliminating the risk of assay interference. However, its use had been limited to lower-throughput assays due to the need for chromatography to overcome ion suppression from the sample matrix. Direct analysis without chromatography has the potential for high throughput if sensitivity is sufficient despite the presence of a matrix. Here, we report and demonstrate a novel direct analysis high-throughput MS system based on infrared matrix-assisted desorption electrospray ionization (IR-MALDESI) that has a potential acquisition rate of 33 spectra/s. We show the development of biochemical assays in standard buffers for wild-type isocitrate dehydrogenase 1 (IDH1), diacylglycerol kinase zeta (DGKζ), and p300 histone acetyltransferase (P300) to demonstrate the suitability of this system for a broad range of high-throughput lead discovery assays. A proof-of-concept pilot screen of ∼3k compounds is also shown for IDH1 and compared to a previously reported fluorescence-based assay. We were able to obtain reliable data at a speed amenable for high-throughput screening of large-scale compound libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Bioensayo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Gut ; 66(2): 285-292, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26503631

RESUMEN

OBJECTIVE: A major impediment to translating chemoprevention to clinical practice has been lack of intermediate biomarkers. We previously reported that rectal interrogation with low-coherence enhanced backscattering spectroscopy (LEBS) detected microarchitectural manifestations of field carcinogenesis. We now wanted to ascertain if reversion of two LEBS markers spectral slope (SPEC) and fractal dimension (FRAC) could serve as a marker for chemopreventive efficacy. DESIGN: We conducted a multicentre, prospective, randomised, double-blind placebo-controlled, clinical trial in subjects with a history of colonic neoplasia who manifested altered SPEC/FRAC in histologically normal colonic mucosa. Subjects (n=79) were randomised to 325 mg aspirin or placebo. The primary endpoint changed in FRAC and SPEC spectral markers after 3 months. Mucosal levels of prostaglandin E2 (PGE2) and UDP-glucuronosyltransferase (UGT)1A6 genotypes were planned secondary endpoints. RESULTS: At 3 months, the aspirin group manifested alterations in SPEC (48.9%, p=0.055) and FRAC (55.4%, p=0.200) with the direction towards non-neoplastic status. As a measure of aspirin's pharmacological efficacy, we assessed changes in rectal PGE2 levels and noted that it correlated with SPEC and FRAC alterations (R=-0.55, p=0.01 and R=0.57, p=0.009, respectively) whereas there was no significant correlation in placebo specimens. While UGT1A6 subgroup analysis did not achieve statistical significance, the changes in SPEC and FRAC to a less neoplastic direction occurred only in the variant consonant with epidemiological evidence of chemoprevention. CONCLUSIONS: We provide the first proof of concept, albeit somewhat underpowered, that spectral markers reversion mirrors antineoplastic efficacy providing a potential modality for titration of agent type/dose to optimise chemopreventive strategies in clinical practice. TRIAL NUMBER: NCT00468910.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Neoplasias del Colon/prevención & control , Análisis Espectral/métodos , Anciano , Antiinflamatorios no Esteroideos/efectos adversos , Aspirina/efectos adversos , Biomarcadores de Tumor , Quimioprevención , Dinoprostona/metabolismo , Método Doble Ciego , Femenino , Genotipo , Glucuronosiltransferasa/genética , Humanos , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Recto/metabolismo
6.
BMC Ecol ; 16: 10, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26996922

RESUMEN

BACKGROUND: At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 µm layer of corals skeletons (measured as 'microscopic' reduced-scattering coefficient, µ'(S,m)), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. RESULTS: Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-µ'(S,m) corals bleach at higher rate and severity than high-µ'(S,m) corals and the Symbiodinium associated with low-µ'(S,m) corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-µ'(S,m) corals. CONCLUSIONS: While symbionts associated with low-[Formula: see text] corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes µ'(S,m) as one of the key determinants of differential bleaching response.


Asunto(s)
Antozoos/fisiología , Antozoos/efectos de la radiación , Arrecifes de Coral , Dinoflagelados/fisiología , Animales , Luz , Fotoblanqueo , Dispersión de Radiación , Simbiosis , Temperatura
7.
J Opt Soc Am A Opt Image Sci Vis ; 31(11): 2394-400, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25401350

RESUMEN

Modeling of coherent polarized light propagation in turbid scattering medium by the Monte Carlo method provides an ultimate understanding of coherent effects of multiple scattering, such as enhancement of coherent backscattering and peculiarities of laser speckle formation in dynamic light scattering (DLS) and optical coherence tomography (OCT) diagnostic modalities. In this report, we consider two major ways of modeling the coherent polarized light propagation in scattering tissue-like turbid media. The first approach is based on tracking transformations of the electric field along the ray propagation. The second one is developed in analogy to the iterative procedure of the solution of the Bethe-Salpeter equation. To achieve a higher accuracy in the results and to speed up the modeling, both codes utilize the implementation of parallel computing on NVIDIA Graphics Processing Units (GPUs) with Compute Unified Device Architecture (CUDA). We compare these two approaches through simulations of the enhancement of coherent backscattering of polarized light and evaluate the accuracy of each technique with the results of a known analytical solution. The advantages and disadvantages of each computational approach and their further developments are discussed. Both codes are available online and are ready for immediate use or download.


Asunto(s)
Electricidad , Luz , Método de Montecarlo , Dispersión de Radiación , Movimiento (Física) , Fotones , Tomografía de Coherencia Óptica
8.
Opt Express ; 21(7): 9043-59, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23571994

RESUMEN

Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific geometrical feature, OCT can be sensitive to tissue structural properties at the nanometer length scale. The statistical mass-density distribution in tissue is quantified by its autocorrelation function modeled by the Whittle-Matern functional family. By measuring the wavelength-dependent backscattering coefficient µb(λ) and the scattering coefficient µs, we introduce a technique called inverse spectroscopic OCT (ISOCT) to quantify the mass-density correlation function. We find that the length scale of sensitivity of ISOCT ranges from ~30 to ~450 nm. Although these sub-diffractional length scales are below the spatial resolution of OCT and therefore not resolvable, they are nonetheless detectable. The sub-diffractional sensitivity is validated by 1) numerical simulations; 2) tissue phantom studies; and 3) ex vivo colon tissue measurements cross-validated by scanning electron microscopy (SEM). Finally, the 3D imaging capability of ISOCT is demonstrated with ex vivo rat buccal and human colon samples.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Modelos Biológicos , Modelos Estadísticos , Tomografía de Coherencia Óptica/métodos , Animales , Simulación por Computador , Humanos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
IEEE J Sel Top Quantum Electron ; 20(2): 7000514, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25587211

RESUMEN

Optical interactions with biological tissue provide powerful tools for study, diagnosis, and treatment of disease. When optical methods are used in applications involving tissue, scattering of light is an important phenomenon. In imaging modalities, scattering provides contrast, but also limits imaging depth, so models help optimize an imaging technique. Scattering can also be used to collect information about the tissue itself providing diagnostic value. Therapies involving focused beams require scattering models to assess dose distribution. In all cases, models of light scattering in tissue are crucial to correctly interpreting the measured signal. Here, we review a versatile model of light scattering that uses the Whittle-Matérn correlation family to describe the refractive index correlation function Bn (rd ). In weakly scattering media such as tissue, Bn (rd ) determines the shape of the power spectral density from which all other scattering characteristics are derived. This model encompasses many forms such as mass fractal and the Henyey-Greenstein function as special cases. We discuss normalization and calculation of optical properties including the scattering coefficient and anisotropy factor. Experimental methods using the model are also described to quantify tissue properties that depend on length scales of only a few tens of nanometers.

10.
Int J Pharm ; 636: 122842, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925024

RESUMEN

Intravenous (IV) administration of poorly water-soluble small molecule therapeutics can lead to precipitation during mixing with blood. This can limit characterization of pharmacological and safety endpoints in preclinical models. Most often, tests of kinetic and thermodynamic solubility are used to optimize the formulation for solubility prior to infusion in animals, but these do not capture the dynamic precipitation processes that take place during in-vivo administration. To better capture the fluid dynamic processes that occur during IV administration, we developed the Optical Spatial PREcipitation analYzer (OSPREY) as a method to quantify the amount and size of compound precipitates in whole blood using a flow-through system that mimics IV administration. Here, we describe the OSPREY device and its underlying imaging processing methods. We then validate the ability to accurately segment particles according to their size using monodisperse suspensions of microspheres (diameter 50 to 425 µm). Next, we use a tool compound, ABT-737, to study the effects of compound concentration, vessel flow rate, compound infusion rate and vessel diameter on precipitation. Finally, we use the physiological diameter and flow rate of rat femoral vein and dog saphenous vein to demonstrate the potential of OSPREY to model in-vivo precipitation in a controlled, dynamic in-vitro assay.


Asunto(s)
Agua , Ratas , Animales , Perros , Inyecciones , Solubilidad , Precipitación Química
11.
ACS Chem Biol ; 18(4): 942-948, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37043689

RESUMEN

Cellular pharmacodynamic assays are crucial aspects of lead optimization programs in drug discovery. These assays are sometimes difficult to develop, oftentimes distal from the target and frequently low throughput, which necessitates their incorporation in the drug discovery funnel later than desired. The earlier direct pharmacodynamic modulation of a target can be established, the fewer resources are wasted on compounds that are acting via an off-target mechanism. Mass spectrometry is a versatile tool that is often used for direct, proximal cellular pharmacodynamic assay analysis, but liquid chromatography-mass spectrometry methods are low throughput and are unable to fully support structure-activity relationship efforts in early medicinal chemistry programs. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is an ambient ionization method amenable to high-throughput cellular assays, capable of diverse analyte detection, ambient and rapid laser sampling processes, and low cross-contamination. Here, we demonstrate the capability of IR-MALDESI for the detection of diverse analytes directly from cells and report the development of a high-throughput, label-free, proximal cellular pharmacodynamic assay using IR-MALDESI for the discovery of glutaminase inhibitors and a biochemical assay for hit confirmation. We demonstrate the throughput with a ∼100,000-compound cellular screen. Hits from the screening were confirmed by retesting in dose-response with mass spectrometry-based cellular and biochemical assays. A similar workflow can be applied to other targets with minimal modifications, which will speed up the discovery of cell active lead series and minimize wasted chemistry resources on off-target mechanisms.


Asunto(s)
Glutaminasa , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glutaminasa/antagonistas & inhibidores , Rayos Láser , Proteínas , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
12.
Opt Express ; 20(18): 19643-57, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23037017

RESUMEN

Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about scattering phase function is preserved. Our group has shown the ability to measure the spatial backscattering impulse response function along with depth-selective optical properties in tissue ex-vivo using LEBS. Here we report the design and implementation of a lens-free fiber optic LEBS probe capable of providing depth-limited measurements of the reduced scattering coefficient in-vivo. Experimental measurements combined with Monte Carlo simulation of scattering phantoms consisting of polystyrene microspheres in water are used to validate the performance of the probe. Additionally, depth-limited capabilities are demonstrated using Monte Carlo modeling and experimental measurements from a two-layered phantom.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Nefelometría y Turbidimetría/instrumentación , Fotometría/instrumentación , Análisis Espectral/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
13.
Opt Lett ; 37(24): 5220-2, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23258058

RESUMEN

Which range of structures contributes to light scattering in a continuous random media, such as biological tissue? In this Letter, we present a model to study the structural length-scale sensitivity of scattering in continuous random media under the Born approximation. The scattering coefficient µs, backscattering coefficient µb, anisotropy factor g, and reduced scattering coefficient µs* as well as the shape of the spatial reflectance profile are calculated under this model. For media with a biologically relevant Henyey-Greenstein phase function with g∼0.93 at wavelength λ=633 nm, we report that µs* is sensitive to structural length-scales from 46.9 nm to 2.07 µm (i.e., λ/13 to 3λ), µb is sensitive from 26.7 to 320 nm (i.e., λ/24 to λ/2), and the spatial reflectance profile is sensitive from 30.8 nm to 2.71 µm (i.e., λ/21 to 4λ).


Asunto(s)
Luz , Modelos Biológicos , Modelos Estadísticos , Nefelometría y Turbidimetría/métodos , Fotometría/métodos , Animales , Simulación por Computador , Humanos , Dispersión de Radiación
14.
IEEE J Sel Top Quantum Electron ; 18(4): 1313-1325, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24163574

RESUMEN

Since the early 1980's, the enhanced backscattering (EBS) phenomenon has been well-studied in a large variety of non-biological materials. Yet, until recently the use of conventional EBS for the characterization of biological tissue has been fairly limited. In this work we detail the unique ability of EBS to provide spectroscopic, polarimetric, and depth-resolved characterization of biological tissue using a simple backscattering instrument. We first explain the experimental and numerical procedures used to accurately measure and model the full azimuthal EBS peak shape in biological tissue. Next we explore the peak shape and height dependencies for different polarization channels and spatial coherence of illumination. We then illustrate the extraordinary sensitivity of EBS to the shape of the scattering phase function using suspensions of latex microspheres. Finally, we apply EBS to biological tissue samples in order to measure optical properties and observe the spatial length-scales at which backscattering is altered in early colon carcinogenesis.

15.
J Am Soc Mass Spectrom ; 33(12): 2338-2341, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36378849

RESUMEN

Deconvolution from intact protein mass-to-charge spectra to mass spectra is essential to generate interpretable data for mass spectrometry (MS) platforms coupled to ionization sources that produce multiply charged species. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) can be used to analyze intact proteins in multiwell microtiter plates with speed matching small molecule analyses (at least 1 Hz). However, the lack of compatible deconvolution software has limited its use in high-throughput screening applications. Most existing automated deconvolution software packages work best for data generated from LC-MS, and to the best of our knowledge, there is no software capable of performing fast plate-based mass spectral deconvolution. Herein we present the use of a new workflow in ProSight Native for the deconvolution of protein spectra from entire well plates that can be completed within 3 s. First, we successfully demonstrated the potential increased throughput benefits produced by the combined IR-MALDESI-MS - ProSight Native platform using protein standards. We then conducted a screen for Bruton's tyrosine kinase (BTK) covalent binders against a well-annotated compound collection consisting of 2232 compounds and applied ProSight Native to deconvolute the protein spectra. Seventeen hits including five known BTK covalent inhibitors in the compound set were identified. By alleviating the data processing bottleneck using ProSight Native, it may be feasible to analyze and report covalent screening results for >200,000 samples in a single day.


Asunto(s)
Espectrometría de Masas , Proteínas , Proteínas/química , Programas Informáticos
16.
J Am Soc Mass Spectrom ; 33(11): 2070-2077, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36173393

RESUMEN

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a hybrid, ambient ionization source that combines the advantages of electrospray ionization and matrix-assisted laser desorption/ionization, making it a versatile tool for both high-throughput screening (HTS) and mass spectrometry imaging (MSI) studies. To expand the capabilities of the IR-MALDESI source, an entirely new architecture was designed to overcome the key limitations of the previous source. This next-generation (NextGen) IR-MALDESI source features a vertically mounted IR-laser, a planar translation stage with computerized sample height control, an aluminum enclosure, and a novel mass spectrometer interface plate. The NextGen IR-MALDESI source has improved user-friendliness, improved overall versatility, and can be coupled to numerous Orbitrap mass spectrometers to accommodate more research laboratories. In this work, we highlight the benefits of the NextGen IR-MALDESI source as an improved platform for MSI and direct analysis. We also optimize the NextGen MALDESI source component geometries to increase target ion abundances over a wide m/z range. Finally, documentation is provided for each NextGen IR-MALDESI part so that it can be replicated and incorporated into any lab space.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Rayos Láser
17.
Opt Lett ; 36(24): 4737-9, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22179867

RESUMEN

In this Letter, we describe an easy to implement technique to measure the spatial backscattering impulse-response at length scales shorter than a transport mean free path with resolution of better than 10 µm using the enhanced backscattering phenomenon. This technique enables spectroscopic measurements throughout the visible range and sensitivity to all polarization channels. Through a combination of Monte Carlo simulations and experimental measurements of latex microspheres, we explore the various sensitivities of our technique to both intrinsic sample properties and extrinsic instrumental properties. We conclude by demonstrating the extraordinary sensitivity of our technique to the shape of the scattering phase function, including higher order shape parameters than the anisotropy factor (or first moment).


Asunto(s)
Óptica y Fotónica , Algoritmos , Anisotropía , Simulación por Computador , Diagnóstico por Imagen/métodos , Diseño de Equipo , Rayos Láser , Modelos Estadísticos , Método de Montecarlo , Oscilometría/métodos , Dispersión de Radiación , Espectrofotometría/métodos
18.
J Biomed Opt ; 23(7): 1-10, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29981224

RESUMEN

While there are a plethora of in vivo fiber-optic spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials with highly trained personnel familiar with the operation of experimental optical technologies, very few techniques show the same level of success in large multicenter trials. To meet the stringent requirements for a viable optical spectroscopy system to be used in a clinical setting, we developed components including an automated calibration tool, optical contact sensor for signal acquisition, and a methodology for real-time in vivo probe calibration correction. The end result is a state-of-the-art medical device that can be realistically used by a physician with spectroscopic fiber-optic probes. We show how the features of this system allow it to have excellent stability measuring two scattering phantoms in a clinical setting by clinical staff with ∼0.5 % standard deviation over 25 unique measurements on different days. In addition, we show the systems' ability to overcome many technical obstacles that spectroscopy applications often face such as speckle noise and user variability. While this system has been designed and optimized for our specific application, the system and design concepts are applicable to most in vivo fiber-optic-based spectroscopic techniques.


Asunto(s)
Fibras Ópticas , Imagen Óptica/instrumentación , Análisis Espectral/instrumentación , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Mucosa Intestinal/diagnóstico por imagen , Fantasmas de Imagen , Recto/diagnóstico por imagen
19.
Biomed Opt Express ; 7(11): 4749-4762, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27896013

RESUMEN

The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.

20.
Cancer Prev Res (Phila) ; 9(11): 844-854, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27549371

RESUMEN

Alterations in high order chromatin, with concomitant modulation in gene expression, are one of the earliest events in the development of colorectal cancer. Cohesins are a family of proteins that modulate high-order chromatin, although the role in colorectal cancer remains incompletely understood. We, therefore, assessed the role of cohesin SA1 in colorectal cancer biology and as a biomarker focusing in particular on the increased incidence/mortality of colorectal cancer among African-Americans. Immunohistochemistry on tissue arrays revealed dramatically decreased SA1 expression in both adenomas (62%; P = 0.001) and adenocarcinomas (75%; P = 0.0001). RT-PCR performed in endoscopically normal rectal biopsies (n = 78) revealed a profound decrease in SA1 expression in adenoma-harboring patients (field carcinogenesis) compared with those who were neoplasia-free (47%; P = 0.03). From a racial perspective, colorectal cancer tissues from Caucasians had 56% higher SA1 expression than in African-Americans. This was mirrored in field carcinogenesis where healthy Caucasians expressed more SA1 at baseline compared with matched African-American subjects (73%; P = 0.003). However, as a biomarker for colorectal cancer risk, the diagnostic performance as assessed by area under ROC curve was greater in African-Americans (AUROC = 0.724) than in Caucasians (AUROC = 0.585). From a biologic perspective, SA1 modulation of high-order chromatin was demonstrated with both biophotonic (nanocytology) and chromatin accessibility [micrococcal nuclease (MNase)] assays in SA1-knockdown HT29 colorectal cancer cells. The functional consequences were underscored by increased proliferation (WST-1; P = 0.0002, colony formation; P = 0.001) in the SA1-knockdown HT29 cells. These results provide the first evidence indicating a tumor suppressor role of SA1 in early colon carcinogenesis and as a risk stratification biomarker giving potential insights into biologic basis of racial disparities in colorectal cancer. Cancer Prev Res; 9(11); 844-54. ©2016 AACR.


Asunto(s)
Adenocarcinoma/etnología , Adenoma/etnología , Biomarcadores de Tumor/análisis , Neoplasias del Colon/etnología , Proteínas Nucleares/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenoma/diagnóstico , Adenoma/metabolismo , Negro o Afroamericano , Carcinogénesis , Cromatina , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/metabolismo , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Población Blanca
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda