Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(1): 233-238, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559205

RESUMEN

The composition of the gut microbiota is largely determined by environmental factors including the host diet. Dietary components are believed to influence the composition of the gut microbiota by serving as nutrients to a subset of microbes, thereby favoring their expansion. However, we now report that dietary fructose and glucose, which are prevalent in the Western diet, specifically silence a protein that is necessary for gut colonization, but not for utilization of these sugars, by the human gut commensal Bacteroides thetaiotaomicron Silencing by fructose and glucose requires the 5' leader region of the mRNA specifying the protein, designated Roc for regulator of colonization. Incorporation of the roc leader mRNA in front of a heterologous gene was sufficient for fructose and glucose to turn off expression of the corresponding protein. An engineered strain refractory to Roc silencing by these sugars outcompeted wild-type B. thetaiotaomicron in mice fed a diet rich in glucose and sucrose (a disaccharide composed of glucose and fructose), but not in mice fed a complex polysaccharide-rich diet. Our findings underscore a role for dietary sugars that escape absorption by the host intestine and reach the microbiota: regulation of gut colonization by beneficial microbes independently of supplying nutrients to the microbiota.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Bacteroides thetaiotaomicron/efectos de los fármacos , Carbohidratos de la Dieta/farmacología , Azúcares de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Proteínas Bacterianas/metabolismo , Fructosa/administración & dosificación , Fructosa/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Glucosa/administración & dosificación , Glucosa/farmacología , Ratones , Polisacáridos/administración & dosificación , Polisacáridos/farmacología , Simbiosis/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 110(2): E161-9, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23256153

RESUMEN

Cellular processes require specific interactions between cognate protein partners and concomitant discrimination against noncognate partners. Signal transduction by classical two-component regulatory systems typically entails an intermolecular phosphoryl transfer between a sensor kinase (SK) and a cognate response regulator (RR). Interactions between noncognate partners are rare because SK/RR pairs coevolve unique interfaces that dictate phosphotransfer specificity. Here we report that the in vitro phosphotransfer specificity is relaxed in hybrid two-component systems (HTCSs) from the human gut symbiont Bacteroides thetaiotaomicron, which harbor both the SK and RR in a single polypeptide. In contrast, phosphotransfer specificity is retained in classical two-component regulatory systems from this organism. This relaxed specificity enabled us to rewire a HTCS successfully to transduce signals between noncognate SK/RR pairs. Despite the relaxed specificity between SK and RRs, HTCSs remained insulated from cross-talk with noncognate proteins in vivo. Our data suggest that the high local concentration of the SK and RR present in the same polypeptide maintains specificity while relaxing the constraints on coevolving unique contact interfaces.


Asunto(s)
Bacteroides/fisiología , Evolución Molecular , Modelos Moleculares , Ingeniería de Proteínas/métodos , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Bacteroides/metabolismo , Western Blotting , Escherichia coli , Funciones de Verosimilitud , Modelos Genéticos , Fosforilación , Proteínas Quinasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Alineación de Secuencia
3.
J Bacteriol ; 197(9): 1538-48, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691527

RESUMEN

UNLABELLED: The mammalian intestine provides nutrients to hundreds of bacterial species. Closely related species often harbor homologous nutrient utilization genes and cocolonize the gut, raising questions regarding the strategies mediating their stable coexistence. Here we reveal that related Bacteroides species that can utilize the mammalian glycan chondroitin sulfate (CS) have diverged in the manner in which they temporally regulate orthologous CS utilization genes. Whereas certain Bacteroides species display a transient surge in CS utilization transcripts upon exposure to CS, other species exhibit sustained activation of these genes. Remarkably, species-specific expression dynamics are retained even when the key players governing a particular response are replaced by those from a species with a dissimilar response. Bacteroides species exhibiting distinct expression behaviors in the presence of CS can be cocultured on CS. However, they vary in their responses to CS availability and to the composition of the bacterial community when CS is the sole carbon source. Our results indicate that diversity resulting from regulation of polysaccharide utilization genes may enable the coexistence of gut bacterial species using a given nutrient. IMPORTANCE: Genes mediating a specific task are typically conserved in related microbes. For instance, gut Bacteroides species harbor orthologous nutrient breakdown genes and may face competition from one another for these nutrients. How, then, does the gut microbial composition maintain such remarkable stability over long durations? We establish that in the case of genes conferring the ability to utilize the nutrient chondroitin sulfate (CS), microbial species vary in how they temporally regulate these genes and exhibit subtle growth differences on the basis of CS availability and community composition. Similarly to how differential regulation of orthologous genes enables related species to access new environments, gut bacteria may regulate the same genes in distinct fashions to reduce the overlap with coexisting species for utilization of available nutrients.


Asunto(s)
Bacteroides/metabolismo , Sulfatos de Condroitina/metabolismo , Tracto Gastrointestinal/microbiología , Animales , Bacteroides/clasificación , Bacteroides/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mamíferos
4.
Mol Microbiol ; 93(5): 1010-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25041429

RESUMEN

Cells respond to nutrient availability by expressing nutrient catabolic genes. We report that the regulator controlling utilization of chondroitin sulphate (CS) in the mammalian gut symbiont Bacteroides thetaiotaomicron is activated by an intermediate in CS breakdown rather than CS itself. We determine that the rate-determining enzyme in CS breakdown is responsible for degrading this intermediate and establish that the levels of the enzyme increase 100-fold, whereas those of the regulator remain constant upon exposure to CS. Because enzyme and regulator compete for the intermediate, B. thetaiotaomicron tunes transcription of CS utilization genes to CS catabolic rate. This tuning results in a transient increase in CS utilization transcripts upon exposure to excess CS. Constitutive expression of the rate-determining enzyme hindered activation of CS utilization genes and growth on CS. An analogous mechanism regulates heparin utilization genes, suggesting that the identified strategy aids B. thetaiotaomicron in the competitive gut environment.


Asunto(s)
Proteínas Bacterianas/genética , Bacteroides/genética , Bacteroides/metabolismo , Sulfatos de Condroitina/metabolismo , Transcripción Genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Bacteroides/crecimiento & desarrollo , Tracto Gastrointestinal/microbiología , Humanos
5.
Cell Rep ; 36(2): 109368, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260944

RESUMEN

T cell expression of sphingosine 1-phosphate (S1P) receptor 1 (S1PR1) enables T cell exit from lymph nodes (LNs) into lymph, while endothelial S1PR1 expression regulates vascular permeability. Drugs targeting S1PR1 treat autoimmune disease by trapping pathogenic T cells within LNs, but they have adverse cardiovascular side effects. In homeostasis, the transporter SPNS2 supplies lymph S1P and enables T cell exit, while the transporter MFSD2B supplies most blood S1P and supports vascular function. It is unknown whether SPNS2 remains necessary to supply lymph S1P during an immune response, or whether in inflammation other compensatory transporters are upregulated. Here, using a model of dermal inflammation, we demonstrate that SPNS2 supplies the S1P that guides T cells out of LNs with an ongoing immune response. Furthermore, deletion of Spns2 is protective in a mouse model of multiple sclerosis. These results support the therapeutic potential of SPNS2 inhibitors to achieve spatially specific modulation of S1P signaling.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Inmunidad , Ganglios Linfáticos/inmunología , Linfocitos T/inmunología , Animales , Proteínas de Transporte de Anión/deficiencia , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Inflamación/inmunología , Inflamación/patología , Linfa/metabolismo , Activación de Linfocitos/inmunología , Lisofosfolípidos , Ratones Endogámicos C57BL , Esfingosina/análogos & derivados
6.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473197

RESUMEN

TGF-ß signaling is fundamental for both Th17 and regulatory T (Treg) cell differentiation. However, these cells differ in requirements for downstream signaling components, such as SMAD effectors. To further characterize mechanisms that distinguish TGF-ß signaling requirements for Th17 and Treg cell differentiation, we investigated the role of Arkadia (RNF111), an E3 ubiquitin ligase that mediates TGF-ß signaling during development. Inactivation of Arkadia in CD4+ T cells resulted in impaired Treg cell differentiation in vitro and loss of RORγt+FOXP3+ iTreg cells in the intestinal lamina propria, which increased susceptibility to microbiota-induced mucosal inflammation. In contrast, Arkadia was dispensable for Th17 cell responses. Furthermore, genetic ablation of two Arkadia substrates, the transcriptional corepressors SKI and SnoN, rescued Arkadia-deficient iTreg cell differentiation both in vitro and in vivo. These results reveal distinct TGF-ß signaling modules governing Th17 and iTreg cell differentiation programs that could be targeted to selectively modulate T cell functions.


Asunto(s)
Diferenciación Celular/inmunología , Proteínas Proto-Oncogénicas/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ubiquitina/inmunología
7.
Cell Host Microbe ; 26(5): 680-690.e5, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31726030

RESUMEN

Gut-dwelling Prevotella copri (P. copri), the most prevalent Prevotella species in the human gut, have been associated with diet and disease. However, our understanding of their diversity and function remains rudimentary because studies have been limited to 16S and metagenomic surveys and experiments using a single type strain. Here, we describe the genomic diversity of 83 P. copri isolates from 11 human donors. We demonstrate that genomically distinct isolates, which can be categorized into different P. copri complex clades, utilize defined sets of polysaccharides. These differences are exemplified by variations in susC genes involved in polysaccharide transport as well as polysaccharide utilization loci (PULs) that were predicted in part from genomic and metagenomic data. Functional validation of these PULs showed that P. copri isolates utilize distinct sets of polysaccharides from dietary plant, but not animal, sources. These findings reveal both genomic and functional differences in polysaccharide utilization across human intestinal P. copri strains.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Polisacáridos/metabolismo , Prevotella/aislamiento & purificación , Prevotella/metabolismo , Dieta , Variación Genética , Genoma Bacteriano/genética , Humanos , Intestinos/microbiología , Plantas/microbiología , Prevotella/clasificación
8.
Curr Opin Microbiol ; 13(2): 226-31, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089442

RESUMEN

Bacterial interaction with eukaryotic hosts is often mediated by classical two-component systems, where a sensor kinase controls the phosphorylated state of a cognate response regulator directly, as well as by atypical two-component systems. In the gut symbiont Bacteroides thetaiotaomicron, the sensor kinase and response regulator domains are fused into a single polypeptide, resulting in a membrane-bound regulator usually directing expression of enzymes that degrade certain sugars, making them digestible for humans. In the opportunistic pathogen Pseudomonas aeruginosa, a sensor kinase alters disease expression programs by binding to and altering the enzymatic properties of a different sensor. Soil-dwelling Streptomyces species rely on response regulators lacking conserved residues to govern expression of antibiotic biosynthetic enzymes in a phosphorylation-independent manner.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/patogenicidad , Transducción de Señal , Streptomyces/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Bacteroides/enzimología , Bacteroides/genética , Humanos , Intestinos/microbiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Streptomyces/genética , Simbiosis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda