Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 10(6): e1004194, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945271

RESUMEN

Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen Yersinia pseudotuberculosis. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the E. coli iron-sulfur cluster regulator, IscR. A Y. pseudotuberculosis iscR in-frame deletion mutant (ΔiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify Y. pseudotuberculosis genes regulated by IscR. We discovered a putative IscR binding motif upstream of the Y. pseudotuberculosis yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in Yersinia, we hypothesized that Yersinia IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in Y. pseudotuberculosis in the absence of IscR. Importantly, mice orally infected with the Y. pseudotuberculosis ΔiscR mutant displayed decreased bacterial burden in Peyer's patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in Y. pseudotuberculosis virulence. This study presents the first characterization of Yersinia IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Proteínas de Escherichia coli/genética , Factores de Transcripción/genética , Factores de Virulencia/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Elementos Transponibles de ADN/genética , Escherichia coli/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Hígado/inmunología , Hígado/microbiología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Ratones , Datos de Secuencia Molecular , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/microbiología , Regiones Promotoras Genéticas/genética , Unión Proteica , Alineación de Secuencia , Bazo/inmunología , Bazo/microbiología , Transcripción Genética , Transcriptoma/genética , Infecciones por Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/patología
2.
G3 (Bethesda) ; 10(1): 267-280, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31727633

RESUMEN

As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development.


Asunto(s)
Ácidos Naftalenoacéticos/farmacología , Proteolisis , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Indolacéticos/química , Larva/efectos de los fármacos , Larva/metabolismo , Microfluídica , Ácidos Naftalenoacéticos/química , Análisis de la Célula Individual , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda