Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cytometry A ; 103(11): 839-850, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768325

RESUMEN

High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.


Asunto(s)
Inmunidad Innata , Tejido Linfoide , Ratones , Animales , Citometría de Flujo/métodos , Linfocitos T , Células Asesinas Naturales , Inmunofenotipificación
2.
Proc Natl Acad Sci U S A ; 117(23): 12674-12685, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32430322

RESUMEN

Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-ß, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-ß). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-ß plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.


Asunto(s)
Inmunoterapia/métodos , Interferón beta/genética , Neoplasias Experimentales/terapia , Linfocitos T/inmunología , Transfección/métodos , Ondas Ultrasónicas , Animales , Línea Celular Tumoral , Membrana Celular/efectos de la radiación , Movimiento Celular , Humanos , Interferón beta/metabolismo , Ratones , Microburbujas/uso terapéutico , Linfocitos T/fisiología
3.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38249519

RESUMEN

We apply spatial transcriptomics and proteomics to select pancreatic cancer surface receptor targets for molecular imaging and theranostics using an approach that can be applied to many cancers. Selected cancer surfaceome epithelial markers were spatially correlated and provided specific cancer localization, whereas the spatial correlation between cancer markers and immune- cell or fibroblast markers was low. While molecular imaging of cancer-associated fibroblasts and integrins has been proposed for pancreatic cancer, our data point to the tight junction protein claudin-4 as a theranostic target. Claudin-4 expression increased ∼16 fold in cancer as compared with normal pancreas, and the tight junction localization conferred low background for imaging in normal tissue. We developed a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ∼25% injected activity per cc (IA/cc) in metastases and ∼18% IA/cc in tumors. Our work motivates a new approach for data-driven selection of molecular targets.

4.
Nat Commun ; 14(1): 6575, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852951

RESUMEN

Manipulating gene expression in the host genome with high precision is crucial for controlling cellular function and behavior. Here, we present a precise, non-invasive, and tunable strategy for controlling the expression of multiple endogenous genes both in vitro and in vivo, utilizing ultrasound as the stimulus. By engineering a hyper-efficient dCas12a and effector under a heat shock promoter, we demonstrate a system that can be inducibly activated through thermal energy produced by ultrasound absorption. This system allows versatile thermal induction of gene activation or base editing across cell types, including primary T cells, and enables multiplexed gene activation using a single guide RNA array. In mouse models, localized temperature elevation guided by high-intensity focused ultrasound effectively triggers reporter gene expression in implanted cells. Our work underscores the potential of ultrasound as a clinically viable approach to enhance cell and gene-based therapies via precision genome and epigenome engineering.


Asunto(s)
Edición Génica , Genoma , Animales , Ratones , Genoma/genética , Terapia Genética , Epigenoma , Genes Reporteros , Sistemas CRISPR-Cas/genética
5.
Biomaterials ; 281: 121339, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35078042

RESUMEN

Ex vivo programming of T cells can be efficacious but is complex and expensive; therefore, the development of methods to transfect T cells in situ is important. We developed and optimized anti-CD3-targeted lipid nanoparticles (aCD3-LNPs) to deliver tightly packed, reporter gene mRNA specifically to T cells. In vitro, targeted LNPs efficiently delivered mCherry mRNA to Jurkat T cells, and T-cell activation and depletion were associated with aCD3 antibody coating on the surface of LNPs. aCD3-LNPs, but not non-targeted LNPs, accumulated within the spleen following systemic injection, with mCherry and Fluc signals visible within 30 min after injection. At 24 h after aCD3-LNP injection, 2-4% of all splenic T cells and 2-7% of all circulating T cells expressed mCherry, and this was dependent on aCD3 coating density. Targeting and transfection were accompanied by systemic CD25+, OX40+, and CD69+ T-cell activation with temporary CD3e ligand loss and depletion of splenic and circulating subsets. Migration of splenic CD8a+ T cells from the white-pulp to red-pulp, and differentiation from naïve to memory and effector phenotypes, followed upon aCD3-LNP delivery. Additionally, aCD3-LNP injection stimulated the secretion of myeloid-derived chemokines and T-helper cytokines into plasma. Lastly, we administered aCD3-LNPs to tumor bearing mice and found that transfected T cells localized within tumors and tumor-draining lymph nodes following immunotherapy treatment. In summary, we show that CD3-targeted transfection is feasible, yet associated with complex immunological consequences that must be further studied for potential therapeutic applications.


Asunto(s)
Lípidos , Nanopartículas , Animales , Liposomas , Ratones , Fenotipo , ARN Mensajero/genética , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda