Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(30): E4311-9, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27407148

RESUMEN

DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Células Cultivadas , ADN/química , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Recombinación Homóloga , Humanos , Células K562 , Conformación de Ácido Nucleico , Interferencia de ARN , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , ADN Polimerasa iota
2.
Int J Cancer ; 140(4): 864-876, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27813122

RESUMEN

Quercetin (Que) is an abundant flavonoid in the human diet and high-concentration food supplement with reported pro- and anti-carcinogenic activities. Topoisomerase II (TopoII) inhibition and subsequent DNA damage induction by Que was implicated in the mixed lineage leukemia gene (MLL) rearrangements that can induce infant and adult leukemias. This notion raised concerns regarding possible genotoxicities of Que in hematopoietic stem and progenitor cells (HSPCs). However, molecular targets mediating Que effects on DNA repair relevant to MLL translocations have not been defined. In this study we describe novel and potentially genotoxic Que activities in suppressing non-homologous end joining and homologous recombination pathways downstream of MLL cleavage. Using pharmacological dissection of DNA-PK, ATM and PI3K signalling we defined PI3K inhibition by Que with a concomitant decrease in the abundance of key DNA repair genes to be responsible for DNA repair inhibition. Evidence for the downstream TopoII-independent mutagenic potential of Que was obtained by documenting further increased frequencies of MLL rearrangements in human HSPCs concomitantly treated with Etoposide and Que versus single treatments. Importantly, by engaging a tissue engineered placental barrier, we have established the extent of Que transplacental transfer and hence provided the evidence for Que reaching fetal HSPCs. Thus, Que exhibits genotoxic effects in human HSPCs via different mechanisms when applied continuously and at high concentrations. In light of the demonstrated Que transfer to the fetal compartment our findings are key to understanding the mechanisms underlying infant leukemia and provide molecular markers for the development of safety values.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/fisiología , Células Madre Hematopoyéticas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , Leucemia/inducido químicamente , Proteína de la Leucemia Mieloide-Linfoide/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quercetina/toxicidad , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa II/toxicidad , Adulto , Ácido Ascórbico/farmacología , Técnicas de Cultivo de Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Relación Dosis-Respuesta a Droga , Etopósido/farmacología , Femenino , Genisteína/farmacología , Histonas/análisis , Humanos , Lactante , Leucemia/genética , Intercambio Materno-Fetal , Fosfatidilinositol 3-Quinasas/fisiología , Embarazo
3.
Front Oncol ; 5: 250, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618143

RESUMEN

Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda