Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Crop Prot ; 142: 105513, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33814663

RESUMEN

Yield losses from rice stem borers depend on the nature of the rice variety, the timing of attack, and the composition of the stem borer species assemblage. This study uses a range of phenotyping methods to distinguish different categories of herbivore-rice interaction that determine relative damage levels (dead heart and whitehead-panicles) and yield losses to varieties exposed to stem borers. Phenotyping studies were conducted in a greenhouse, screen house and field using two stem borer species (Scirpophaga incertulas [yellow stem borer - YSB] and Chilo suppressalis [striped stem borer - SSB]) and 12 rice lines. Only YSB displayed oviposition preferences across rice varieties. Both stem borer species performed better (greater survival, shorter development times, heavier pupae) on rice at vegetative compared to reproductive growth stages, and SSB was less capable than YSB of developing on rice at reproductive growth stages. Stem borer larval survival, body weight, development time, and tiller damage across different rice varieties in greenhouse experiments was poorly correlated between the two stem borer species and for each of the species on rice at two different plant growth stages (vegetative and reproductive). In contrast, rice tillering and yield responses to the two stem borer species were often highly correlated, but only when plants were attacked at the reproductive stage. Short-term, controlled experiments revealed aspects of host resistance and relative changes in plant biomass and yield in response to damage (condition change). However, the results from controlled environments and field-plots were not generally correlated because plant vulnerability, i.e., relative exposure to stem borer attack due to crop duration, largely determined field damage. We recommend that phenotyping studies should differentiate between the resistance, tolerance and vulnerability of rice lines to complexes of stem borers in a given region. Single stem borer species experiments under controlled environments are useful to gain knowledge of the nature of rice-stem borer interactions; however, field testing with comparative treatments, particularly under high soil fertilizer levels that increase plant attractiveness, are better for assessing the relative propensities of rice varieties to incur damage and yield losses due to complexes of stem borers.

2.
Crop Prot ; 115: 47-58, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30739972

RESUMEN

We tested the hypotheses that increasing the number of anti-herbivore resistance loci in crop plants will increase resistance strength, increase the spectrum of resistance (the number of species affected), and increase resistance stability. We further examined the potential ecological costs of pyramiding resistance under benign environments. In our experiments, we used 14 near-isogenic rice lines with zero (T65: recurrent parent), one, two or three resistance loci introgressed through marker-assisted selection. Lines with two or more loci that were originally bred for resistance to the green rice leafhopper, Nephotettix cincticeps, significantly reduced egg-laying by the green leafhopper, N. virescens. Declines in egg-number and in nymph weight were correlated with the numbers of resistance loci in the rice lines. To test the spectrum of resistance, we challenged the lines with a range of phloem feeders including the zig-zag leafhopper, Recilia dorsalis, brown planthopper, Nilaparvata lugens, and whitebacked planthopper, Sogatella furcifera. There was an increase in the number of tested species showing significant declines in egg-laying and nymph survival on lines with increasing numbers of loci. In a screen house trial that varied rates of nitrogenous fertilizer, a line with three loci had stable resistance against the green leafhopper and the grain yields of infested plants were maintained or increased (overcompensation). Under benign conditions, plant growth and grain yields declined with increasing numbers of resistance loci. However, under field conditions with natural exposure to herbivores, there were no significant differences in final yields. Our results clearly indicate the benefits, including unanticipated benefits such as providing resistance against multiple herbivore species, of pyramiding anti-herbivore resistance genes/loci in crop plants. We discuss our results as part of a review of existing research on pyramided resistance against leafhoppers and planthoppers in rice. We suggest that potential ecological costs may be overcome by the careful selection of gene combinations for pyramiding, avoidance of high (potentially redundant) loci numbers, and introgression of loci into robust plant types such as hybrid rice varieties.

3.
Field Crops Res ; 217: 53-65, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29503500

RESUMEN

High resource availability can reduce anti-herbivore resistance (a plant's ability to defend against herbivores and reduce damage) in rice, Oryza sativa L, but may also increase tolerance (a plant's ability to withstand damage by, for example, compensatory growth). Through a series of greenhouse, screenhouse and field experiments, this study examines fitness (survival and development × reproduction) of the brown planthopper, Nilaparvata lugens (Stål), on resistant (IR62) and susceptible (IR22) rice varieties and age-related rice tolerance to planthopper damage under varying resource (nitrogenous fertilizer) availability. Planthoppers reared on IR62 in the greenhouse had lower fitness than planthoppers on IR22. IR62 became increasingly resistant as plants aged. IR22 was generally more tolerant of planthopper damage, and tolerance increased in IR22, but declined in IR62, as the plants aged. Rice plants infested at pre-tillering stages (3-4 leaf stage) in the screenhouse had greater losses to root, shoot and grain yield per unit weight of planthopper than plants infested at tillering stages, particularly in IR22. These trends were mainly due to the impact of planthoppers during pre-tillering stages and the length of exposure to the planthoppers. High nitrogen compromised IR62 resistance, particularly in tillering plants in the greenhouse study; however, high nitrogen did not increase planthopper biomass-density on IR62 in greenhouse or field cages. Tolerance to damage in IR62 at mid-tillering stages declined under increasing levels of nitrogen, but nitrogen increased tolerance during late-tillering stages. Planthopper damage to IR22 in field cages was severe and hopperburn (plant death) occurred in 83% of IR22 plants under high nitrogen (60-150 kg N ha-1). In contrast, despite planthopper infestations, damage to IR62 was low in field-grown plants and productivity (tillers, roots, shoots and grain) increased in IR62 under increasing nitrogen. Our results indicate that, whereas nitrogenous fertilizer increases planthopper fitness on susceptible and resistant varieties, the net effects of high nitrogen on IR62 include decreased planthopper biomass-density (apparent in all experiments) and higher tolerance to damage during later growth stages (observed in the greenhouse, and during one of two seasons in field cages).

4.
Crop Prot ; 113: 40-47, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30393420

RESUMEN

Pyramiding resistance genes is predicted to increase the durability of resistant rice varieties against phloem-feeding herbivores. We examined responses by the green leafhopper, Nephotettix virescens (Hemiptera: Cicadellidae), to near-isogenic rice lines with zero, one and two resistance genes. The recurrent parent (T65) and monogenic lines (GRH2-NIL and GRH4-NIL) with genes for resistance to the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), were susceptible to the green leafhopper, but the pyramided line (GRH2/GRH4-PYL) was highly resistant to the green leafhopper. We selected green leafhoppers, N. virescens, from five sites in the Philippines for over 20 generations on each of the four lines. Populations selected on GRH2/GRH4-PYL gained partial virulence (feeding and development equal to that on T65) to the pyramided line within 10 generations and complete virulence (egg-laying equal to that on T65) within 20 generations. After 20 generations of rearing on the susceptible monogenic lines, green leafhoppers were also capable of developing and laying eggs on GRH2/GRH4-PYL. Furthermore, green leafhoppers reared on the susceptible GRH4-NIL for 20 generations showed equal preferences for T65 and GRH2/GRH4-PYL in choice bioassays. Our results indicate that previous long-term exposure to ineffective genes (including unperceived resistance genes) could dramatically reduce the durability of pyramided resistance. We suggest that informed crop management and deployment strategies should be developed to accompany rice lines with pyramided resistance and avoid the build-up of virulent herbivore populations.

5.
Crop Prot ; 89: 223-230, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27812236

RESUMEN

A series of experiments was set up to examine the effects of nitrogen on rice (Oryza sativa L.) resistance against Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth). Egg laying by N. lugens was reduced on the indica variety IR60. Nymph biomass (N. lugens and S. furcifera) was also lower on IR60: this was associated with low honeydew production and a high proportion of xylem-derived honeydew in N. lugens but not in S. furcifera. Nitrogen increased egg-laying by S. furcifera and increased N. lugens nymph biomass on all varieties tested. Oviposition and egg mortality in both planthopper species were examined on plants at 15, 30 and 45 days after sowing (DAS). Sogatella furcifera laid more eggs on plants at 15 DAS, but laid few eggs during darkness; N. lugens continued to lay eggs on older rice plants (30 DAS) and during darkness. Egg mortality was high on cv. Asiminori, highest at 45 DAS, and higher for S. furcifera than for N. lugens. Mortality of S. furcifera eggs was associated with lesions around the egg clusters. These were more common around clusters laid during the day and suggested induction by Asiminori of an ovicidal response. Egg mortality declined under higher soil nitrogen levels. Results are discussed in the light of improving rice resistance against planthoppers and reducing rates of planthopper adaptation to resistance genes.

6.
Insects ; 15(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921131

RESUMEN

Hybrid rice results from crossing a male-sterile line (the A line) with a pollen doner (the restorer or R line). In 3-line hybrid breeding systems, a fertile B line is also required to maintain A line populations. Heterosis is defined as a condition of traits whereby the hybrid exceeds the average of the parental lines. Heterobeltiosis is where the hybrid exceeds both parents. Hybrid rice may display heterosis/heterobeltiosis for growth, yield and resistance to herbivores, among other traits. In a greenhouse experiment, we assessed the frequency of heterosis for resistance to the brown planthopper (Nilaparvata lugans (BPH)), whitebacked planthopper (Sogatella furcifera (WBPH)) and yellow stemborer (Scirpophaga incertulas (YSB)) in eight hybrids under varying soil nitrogen conditions. We also assessed plant biomass losses due to herbivore feeding as an approximation of tolerance (the plant's capacity to compensate for damage). Nitrogen reduced resistance to all three herbivores but was also associated with tolerance to WBPH and YSB based on improved plant survival, growth and/or yields. Plant biomass losses per unit weight of WBPH also declined under high nitrogen conditions for a number of hybrids, and there were several cases of overcompensation in rice for attacks by this herbivore. There was one case of nitrogen-related tolerance to BPH (increased grain yield) for a hybrid line with relatively high resistance, likely due to quantitative traits. Heterosis and heterobeltiosis were not essential to produce relatively high herbivore resistance or tolerance across hybrids.

7.
Forensic Sci Int ; 335: 111288, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35397359

RESUMEN

Although rice production landscapes are often the scene of homicides, vertebrate decomposition and associated arthropods have never been described from rice paddies. Tropical rice landscapes are typically composed of irrigated/non-irrigated rice fields, fallow land (i.e., uncultivated fields), and low earthen levees (bunds) used as access pathways. The specific microclimatic and environmental conditions associated with each subunit of rice field landscapes are likely to impact carcass decomposition as well as the arthropod species associated with carrion. Here, we tested the hypothesis that the combined effects of constraints on arthropod colonization and survival, scarcity of necromass, limited habitat architecture, and recurrent disturbance limit the ability of carrion-related arthropods to colonize corpses and large carcasses in tropical rice-fields. Our results from monitoring pig carcasses in Philippine rice fields indicated that vertebrate decomposition in irrigated fields was slower and incomplete when compared to non-irrigated fields and bunds. Carcasses were colonized by a small complex of carrion-related arthropods that differed in composition and relative species abundance between dry bunds and relatively humid rice paddies. Fire ants (Solenopsis germinata) were observed frequently on carcasses exposed on bunds, rarely in non-irrigated fields, and almost never in irrigated fields. The presence of fire ants was associated with reduced blow fly (Chrysomya megacephala) abundance. Taken together, this indicates that the arthropod fauna associated with carcasses in tropical rice fields is relatively simple in contrast to the generally high arthropod diversity reported for other ecosystems at tropical latitudes. The limited richness of the community also means that an understanding of the development of one abundant calliphorid blow fly, C. megacephala, may be sufficient to investigate deaths and homicides under conditions similar to the ones described in this study.


Asunto(s)
Artrópodos , Oryza , Animales , Cadáver , Calliphoridae , Ecosistema , Porcinos
8.
Environ Entomol ; 50(4): 929-939, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-33907805

RESUMEN

Two stem-boring moths, the yellow stemborer (YSB) Scirpophaga incertulas (Walker), and the striped stemborer (SSB), Chilo suppressalis (Walker), damage rice in Asia. YSB is the dominant species in much of tropical Asia. Both species are oligophagous on domesticated and wild rice. We investigated the roles of host plant preferences and larval performance in determining the larval densities of both species in rice plots. In screenhouse experiments, YSB showed significant preference-performance coupling. Adults preferred high-tillering rice varieties during early vegetative growth. In contrast, SSB did not demonstrate oviposition preferences under the same screenhouse conditions, but did oviposit less on the wild rice Oryza rufipogon Griff. than on domesticated rice varieties during a choice experiment. Despite differences in preference-performance coupling, larval survival and biomass across 10 varieties were correlated between the two species. YSB and SSB larvae occurred in relatively high numbers on rice varieties with large tillers (IR70, IR68, and T16) in wet and dry season field experiments. However, whereas YSB was the dominant species on IR68 and IR70, it was relatively less abundant on T16, where SSB dominated. Results suggest that YSB preferentially attacked fast-growing rice varieties with high tiller numbers early in the crop cycle. Meanwhile SSB, which has weak preference-performance coupling, occurred in rice plants with large tillers that were relatively free of YSB later in the crop cycle. These factors may allow the species to coexist. We discuss the implications of proximate and ultimate factors influencing stemborer co-occurrence for the sustainable production of rice in tropical Asia.


Asunto(s)
Mariposas Nocturnas , Oryza , Animales , Larva , Oviposición , Control Biológico de Vectores
9.
Ecol Evol ; 9(20): 11911-11929, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31695897

RESUMEN

The microbiomes of phloem-feeding insects include functional bacteria and yeasts essential for herbivore survival and development. Changes in microbiome composition are implicated in virulence adaptation by herbivores to host plant species or host populations (including crop varieties). We examined patterns in adaptation by the green leafhopper, Nephotettix virescens, to near-isogenic rice lines (NILs) with one or two resistance genes and the recurrent parent T65, without resistance genes. Only the line with two resistance genes was effective in reducing leafhopper fitness. After 20 generations on the resistant line, selected leafhoppers attained similar survival, weight gain, and egg laying to leafhoppers that were continually reared on the susceptible recurrent parent, indicating that they had adapted to the resistant host. By sequencing the 16s rRNA gene, we described the microbiome of leafhoppers from colonies associated with five collection sites, and continually reared or switched between NILs. The microbiomes included 69-119 OTUs of which 44 occurred in ≥90% of samples. Of these, 14 OTUs were assigned to the obligate symbiont Candidatus sulcia clade. After 20 generations of selection, collection site had a greater effect than host plant on microbiome composition. Six bacteria genera, including C. sulcia, were associated with leafhopper virulence. However, there was significant within-treatment, site-related variability in the prevalence of these taxa such that the mechanisms underlying their association with virulence remain to be determined. Our results imply that these taxa are associated with leafhopper nutrition. Ours is the first study to describe microbiome diversity and composition in rice leafhoppers. We discuss our results in light of the multiple functions of herbivore microbiomes during virulence adaptation in insect herbivores.

10.
Insects ; 10(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581452

RESUMEN

Integrated biodiversity management aims to conserve the beneficial species components of production ecosystems and reduce the impacts of pests. In 2011 and 2013, experiments were conducted at Los Baños, Laguna, Philippines, to compare arthropod communities in rice plots and on levees with and without vegetation strips. Vegetation strips included spontaneous weeds, sesame and okra (2011), or mung bean (2013). The plots were treated with one of three nitrogen levels and in one experiment were planted with planthopper-resistant (IR62) and susceptible (IR64) rice varieties. Parasitoids and predators of lepidopteran pests and of the ricebug, Leptocorisa oratorius, were more abundant in high-nitrogen rice plots where their prey/hosts also had highest densities. Planthoppers and leafhoppers were more abundant in low-nitrogen plots. Weedy and sesame/okra bunds provided habitat for a range of natural enemies including spiders, parasitoids and predatory bugs, but did not have higher pest numbers than cleared bunds. Higher abundances of the predator Cythorhinus lividipennis and higher parasitism of planthopper (Nilaparvata lugens) eggs by Anagrus sp. were associated with sesame/okra bunds in late season rice plots. Mung bean also provided habitat for key predators and parasitoids that spilled over to adjacent rice; however, mung bean was also associated with higher numbers of lepidopteran and grain-sucking pests in the adjacent rice, albeit without increased damage to the rice. For ricebug in particular, damage was probably reduced by higher parasitoid:pest ratios adjacent to the vegetation strips. Varietal resistance and mung bean strips had an additive effect in reducing abundance of the planthopper Sogatella furcifera and the leafhopper Nephotettix virescens. Reduced numbers of these latter pests close to vegetation strips were often compensated for by other plant-sucking bugs, thereby increasing the intensity of potentially stabilizing interspecific interactions such as competition. We highlight the benefits of diversifying rice landscapes and the need to optimize vegetation strips, e.g., by including lepidopteran trap-plants, for intensive rice production systems.

11.
Agronomy (Basel) ; 7: 62, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32704393

RESUMEN

This study examines aspects of virulence to resistant rice varieties among planthoppers and leafhoppers. Using a series of resistant varieties, brown planthopper, Nilaparvata lugens, virulence was assessed in seedlings and early-tillering plants at seven research centers in South and East Asia. Virulence of the whitebacked planthopper, Sogatella furcifera, in Taiwan and the Philippines was also assessed. Phylogenetic analysis of the varieties using single-nucleotide polymorphisms (SNPs) indicated a clade of highly resistant varieties from South Asia with two further South Asian clades of moderate resistance. Greenhouse bioassays indicated that planthoppers can develop virulence against multiple resistance genes including genes introgressed from wild rice species. Nilaparvata lugens populations from Punjab (India) and the Mekong Delta (Vietnam) were highly virulent to a range of key resistance donors irrespective of variety origin. Sogatella furcifera populations were less virulent to donors than N. lugens; however, several genes for resistance to S. furcifera are now ineffective in East Asia. A clade of International Rice Research Institute (IRRI)-bred varieties and breeding lines, without identified leafhopper-resistance genes, were highly resistant to the green leafhopper, Nephotettix virescens. Routine phenotyping during breeding programs likely maintains high levels of quantitative resistance to leafhoppers. We discuss these results in the light of breeding and deploying resistant rice in Asia.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda