Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell ; 150(5): 909-21, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939620

RESUMEN

Some Ts in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (ß-D-glucosyl-hydroxymethyluracil). In Leishmania, about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA polymerase II termination sites. This internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J in JBP2 knockout cells is accompanied by massive readthrough at RNA polymerase II termination sites. The readthrough varies between transcription units but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive readthrough of transcriptional stops.


Asunto(s)
Glucósidos/metabolismo , Leishmania/genética , Leishmania/metabolismo , Transcripción Genética , Uracilo/análogos & derivados , Técnicas de Inactivación de Genes , ARN Polimerasa II/metabolismo , ARN Bicatenario/metabolismo , Uracilo/metabolismo
2.
J Biol Chem ; 290(49): 29629-41, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26318454

RESUMEN

The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNA(Gln) and a glutaminyl-tRNA amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln). Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNA(Gln) to Gln-tRNA(Gln) in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.


Asunto(s)
Apicoplastos/metabolismo , Factores de Transcripción GATA/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Aminoacil-ARN de Transferencia/biosíntesis , Antimaláricos/química , Núcleo Celular/metabolismo , Biología Computacional , Eritrocitos/parasitología , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Malaria/metabolismo , Malaria/parasitología , Modelos Moleculares , Filogenia , Estructura Terciaria de Proteína , ARN de Transferencia de Glutamina/genética , Proteínas Recombinantes/metabolismo
3.
BMC Genomics ; 17: 306, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27118143

RESUMEN

BACKGROUND: Trypanosoma brucei is a unicellular parasite which multiplies in mammals (bloodstream form) and Tsetse flies (procyclic form). Trypanosome RNA polymerase II transcription is polycistronic, individual mRNAs being excised by trans splicing and polyadenylation. We previously made detailed measurements of mRNA half-lives in bloodstream and procyclic forms, and developed a mathematical model of gene expression for bloodstream forms. At the whole transcriptome level, many bloodstream-form mRNAs were less abundant than was predicted by the model. RESULTS: We refined the published mathematical model and extended it to the procyclic form. We used the model, together with known mRNA half-lives, to predict the abundances of individual mRNAs, assuming rapid, unregulated mRNA processing; then we compared the results with measured mRNA abundances. Remarkably, the abundances of most mRNAs in procyclic forms are predicted quite well by the model, being largely explained by variations in mRNA decay rates and length. In bloodstream forms substantially more mRNAs are less abundant than predicted. We list mRNAs that are likely to show particularly slow or inefficient processing, either in both forms or with developmental regulation. We also measured ribosome occupancies of all mRNAs in trypanosomes grown in the same conditions as were used to measure mRNA turnover. In procyclic forms there was a weak positive correlation between ribosome density and mRNA half-life, suggesting cross-talk between translation and mRNA decay; ribosome density was related to the proportion of the mRNA on polysomes, indicating control of translation initiation. Ribosomal protein mRNAs in procyclics appeared to be exceptionally rapidly processed but poorly translated. CONCLUSIONS: Levels of mRNAs in procyclic form trypanosomes are determined mainly by length and mRNA decay, with some control of precursor processing. In bloodstream forms variations in nuclear events play a larger role in transcriptome regulation, suggesting aquisition of new control mechanisms during adaptation to mammalian parasitism.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/genética , ARN Protozoario/genética , Proteínas Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética , Semivida , Modelos Genéticos , Proteínas Protozoarias/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Transcripción Genética , Transcriptoma
4.
PLoS Pathog ; 10(7): e1004244, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24992200

RESUMEN

A central question in Leishmania research is why most species cause cutaneous infections but others cause fatal visceral disease. Interestingly, L. donovani causes both visceral and cutaneous leishmaniasis in Sri Lanka. L. donovani clinical isolates were therefore obtained from cutaneous leishmaniasis (CL-SL) and visceral leishmaniasis (VL-SL) patients from Sri Lanka. The CL-SL isolate was severely attenuated compared to the VL-SL isolate for survival in visceral organs in BALB/c mice. Genomic and transcriptomic analysis argue that gene deletions or pseudogenes specific to CL-SL are not responsible for the difference in disease tropism and that single nucleotide polymorphisms (SNPs) and/or gene copy number variations play a major role in altered pathology. This is illustrated through the observations within showing that a decreased copy number of the A2 gene family and a mutation in the ras-like RagC GTPase enzyme in the mTOR pathway contribute to the attenuation of the CL-SL strain in visceral infection. Overall, this research provides a unique perspective on genetic differences associated with diverse pathologies caused by Leishmania infection.


Asunto(s)
Eliminación de Gen , Leishmania donovani/genética , Leishmaniasis Visceral/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Seudogenes , Animales , Femenino , Humanos , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología
5.
PLoS Pathog ; 10(2): e1003938, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586154

RESUMEN

The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.


Asunto(s)
Leishmania donovani/genética , Leishmania donovani/metabolismo , Proteoma/metabolismo , Estrés Fisiológico/fisiología , Cromatografía Liquida , Humanos , Purinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
6.
BMC Genomics ; 15: 911, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25331479

RESUMEN

BACKGROUND: Trypanosoma brucei subspecies infect humans and animals in sub-Saharan Africa. This early diverging eukaryote shows many novel features in basic biological processes, including the use of polycistronic transcription to generate all protein-coding mRNAs. Therefore we hypothesized that translational control provides a means to tune gene expression during parasite development in mammalian and fly hosts. RESULTS: We used ribosome profiling to examine genome-wide protein synthesis in animal-derived slender bloodstream forms and cultured procyclic (insect midgut) forms. About one-third of all CDSs showed statistically significant regulation of protein production between the two stages. Of these, more than two-thirds showed a change in translation efficiency, but few appeared to be controlled by this alone. Ribosomal proteins were translated poorly, especially in animal-derived parasites. A disproportionate number of metabolic enzymes were up-regulated at the mRNA level in procyclic forms, as were variant surface glycoproteins in bloodstream forms. Comparison with cultured bloodstream forms from another strain revealed stage-specific changes in gene expression that transcend strain and growth conditions. Genes with upstream ORFs had lower mean translation efficiency, but no evidence was found for involvement of uORFs in stage-regulation. CONCLUSIONS: Ribosome profiling revealed that differences in the production of specific proteins in T. brucei bloodstream and procyclic forms are more extensive than predicted by analysis of mRNA abundance. While in vivo and in vitro derived bloodstream forms from different strains are more similar to one another than to procyclic forms, they showed many differences at both the mRNA and protein production level.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Biosíntesis de Proteínas , Proteínas Protozoarias/genética , Proteínas Ribosómicas/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Animales , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , ARN Protozoario/genética , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
7.
Nucleic Acids Res ; 40(Database issue): D98-108, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22116062

RESUMEN

GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms.


Asunto(s)
Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Animales , Artrópodos/genética , Genoma Bacteriano , Genoma de los Helmintos , Genoma de Protozoos , Internet , Vocabulario Controlado
8.
Nucleic Acids Res ; 38(Database issue): D457-62, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843604

RESUMEN

TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) to integrate genome annotation and analyses from GeneDB and elsewhere with a wide variety of functional genomics datasets made available by members of the global research community, often pre-publication. Currently, TriTrypDB integrates datasets from Leishmania braziliensis, L. infantum, L. major, L. tarentolae, Trypanosoma brucei and T. cruzi. Users may examine individual genes or chromosomal spans in their genomic context, including syntenic alignments with other kinetoplastid organisms. Data within TriTrypDB can be interrogated utilizing a sophisticated search strategy system that enables a user to construct complex queries combining multiple data types. All search strategies are stored, allowing future access and integrated searches. 'User Comments' may be added to any gene page, enhancing available annotation; such comments become immediately searchable via the text search, and are forwarded to curators for incorporation into the reference annotation when appropriate.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Leishmania/genética , Trypanosoma/genética , Animales , Biología Computacional/tendencias , Bases de Datos de Proteínas , Genoma de Protozoos , Almacenamiento y Recuperación de la Información/métodos , Internet , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Programas Informáticos , Interfaz Usuario-Computador
9.
Microbiol Resour Announc ; 10(35): e0054521, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34472979

RESUMEN

We report the high-quality draft assemblies and gene annotations for 13 species and/or strains of the protozoan parasite genera Leishmania, Endotrypanum, and Crithidia, which span the phylogenetic diversity of the subfamily Leishmaniinae within the kinetoplastid order of the phylum Euglenazoa. These resources will support studies on the origins of parasitism.

10.
Bioinformatics ; 24(13): i383-9, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18586738

RESUMEN

MOTIVATION: The sequencing of the Plasmodium yoelii genome, a model rodent malaria parasite, has greatly facilitated research for the development of new drug and vaccine candidates against malaria. Unfortunately, only preliminary gene models were annotated on the partially sequenced genome, mostly by in silico gene prediction, and there has been no major improvement of the annotation since 2002. RESULTS: Here we report on a systematic assessment of the accuracy of the genome annotation based on a detailed analysis of a comprehensive set of cDNA sequences and proteomics data. We found that the coverage of the current annotation tends to be biased toward genes expressed in the blood stages of the parasite life cycle. Based on our proteomic analysis, we estimate that about 15% of the liver stage proteome data we have generated is absent from the current annotation. Through comparative analysis we identified and manually curated a further 510 P. yoelii genes which have clear orthologs in the P. falciparum genome, but were not present or incorrectly annotated in the current annotation. This study suggests that improvements of the current P. yoelii genome annotation should focus on genes expressed in stages other than blood stages. Comparative analysis will be critically helpful for this re-annotation. The addition of newly annotated genes will facilitate the use of P. yoelii as a model system for studying human malaria. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Genoma de Protozoos/genética , Plasmodium yoelii/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Animales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Biochem Biophys Res Commun ; 372(2): 373-8, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18486605

RESUMEN

Plasmodium falciparum Tudor Staphylococcal Nuclease (PfTSN) has a multidomain organization and preferentially cleaves single stranded RNAs. PfTSN is quite distinct from its vertebrate homologues both in terms of its primary sequence and functional activity. Here, we analyzed the effect of PfTSN specific siRNA on parasite growth and development. Treatment of parasite culture with PfTSN siRNA at the late ring stage resulted in substantial inhibition in parasite growth. The PfTSN siRNA treated parasite cultures showed significant reduction in specific mRNA and PfTSN expression. Morphological examination of PfTSN siRNA treated parasites showed block in the development of parasite at the trophozoite stage. Treatment of parasites with a specific inhibitor of micrococcal nucleases, 3',5'-deoxythymidine biphosphate (pdTp) resulted in similar block in parasite development, thereby suggesting that PfTSN plays an important role at the trophozoite stage of the parasite. Collectively, our findings point towards an essential role for the PfTSN in the parasite's infection cycle.


Asunto(s)
Nucleasa Microcócica/fisiología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Nucleasa Microcócica/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Nucleótidos de Timina/farmacología
12.
Parasitol Int ; 67(4): 476-480, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29609036

RESUMEN

Leishmania infantum is responsible for human and canine leishmaniasis in the Mediterranean basin, where the major vector is Phlebotomus perniciosus. Because isolation of sufficient parasites from the sand fly gut is technically challenging, axenic cultivation of promastigotes is routinely used to obtain material for biochemical and genetic analyses. Here, we report the use of Spliced Leader RNA-seq (SL-seq) to compare transcript abundance in cultured promastigotes and those obtained from the whole midgut of the sand fly 5 days after infection. SL-seq allows for amplification of RNA from the parasite avoiding contamination with RNA from the gut of the insect. The study has been performed by means of a single technical replicate comparing pools of samples obtained from sand fly-derived (sfPro) and axenic culture promastigotes (acPro). Although there was a moderate correlation (R2 = 0.83) in gene expression, 793 genes showed significantly different (≥2-fold, p <0.05) mRNA levels in sand fly-derived promastigotes and in culture, of which 31 were up-regulated ≥8-fold (p < 10-8 in most cases). These included several genes that are typically up-regulated during metacyclogenesis, suggesting that sand fly-derived promastigotes contain a substantial number of metacyclics, and/or that their differentiation status as metacyclics is more advanced in these populations. Infection experiments and studies evaluating the proportion of metacyclic promastigotes in culture and within the sand fly gut, previously reported by us, support the last hypothesis.


Asunto(s)
Leishmania infantum/genética , Leishmania infantum/aislamiento & purificación , Estadios del Ciclo de Vida/genética , Phlebotomus/parasitología , Animales , Cultivo Axénico/métodos , Vectores de Enfermedades , Perfilación de la Expresión Génica/métodos , Intestinos/parasitología , Leishmania infantum/fisiología , Leishmaniasis/etnología , Leishmaniasis/parasitología , Phlebotomus/anatomía & histología , Análisis de Secuencia de ARN/métodos
13.
Mol Biochem Parasitol ; 152(2): 139-48, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17270290

RESUMEN

The beta subunits (beta1, beta2, and beta5) of 20S proteasome and HslV/ClpQ are ATP-dependent threonine proteases present in eukaryotes and prokaryotes, respectively that control levels of key regulatory proteins in the cell. The orthologue of prokaryotic HslV protease in Plasmodium falciparum (PfHslV) is a novel drug target candidate that has no homolog in the human host. In the present study, the PfHslV was expressed, localized and biochemically characterized. The recombinant PfHslV harbored threonine protease specific activity as well as chymotrypsin like and peptidyl glutamyl peptide hydrolase activities. All the three activities could be inhibited by respective specific inhibitors. The protein was localized in the cytosol of the parasite as a soluble protein by Western immunoblotting of parasite fractions and by immuno-fluorescence microscopy. Activity of the protease in the parasite was ascertained by following the degradation of GFP in a transgenic parasite line expressing fusion protein of GFP and Arc-repressor gene, a known target of HslV protease in the prokaryotes. A model structure of PfHslV was constructed based on the crystal structure of Escherichia coli HslV to assess the structural homology. Availability of the structure model of PfHslV may facilitate identification or designing of novel and specific drugs against PfHslV. The in vitro protease assays with recombinant PfHslV and the transgenic parasite line generated in the present study may be exploited in the screening of novel inhibitors to evaluate their anti-malarial activity.


Asunto(s)
Proteasas ATP-Dependientes/análisis , Proteasas ATP-Dependientes/química , Plasmodium falciparum/enzimología , Proteínas Protozoarias/análisis , Proteínas Protozoarias/química , Proteasas ATP-Dependientes/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Cristalografía por Rayos X , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium falciparum/metabolismo , Conformación Proteica , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
14.
Sci Rep ; 7(1): 3725, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623350

RESUMEN

High throughput sequencing techniques are poorly adapted for in vivo studies of parasites, which require prior in vitro culturing and purification. Trypanosomatids, a group of kinetoplastid protozoans, possess a distinctive feature in their transcriptional mechanism whereby a specific Spliced Leader (SL) sequence is added to the 5'end of each mRNA by trans-splicing. This allows to discriminate Trypansomatid RNA from mammalian RNA and forms the basis of our new multiplexed protocol for high-throughput, selective RNA-sequencing called SL-seq. We provided a proof-of-concept of SL-seq in Leishmania donovani, the main causative agent of visceral leishmaniasis in humans, and successfully applied the method to sequence Leishmania mRNA directly from infected macrophages and from highly diluted mixes with human RNA. mRNA profiles obtained with SL-seq corresponded largely to those obtained from conventional poly-A tail purification methods, indicating both enumerate the same mRNA pool. However, SL-seq offers additional advantages, including lower sequencing depth requirements, fast and simple library prep and high resolution splice site detection. SL-seq is therefore ideal for fast and massive parallel sequencing of parasite transcriptomes directly from host tissues. Since SLs are also present in Nematodes, Cnidaria and primitive chordates, this method could also have high potential for transcriptomics studies in other organisms.


Asunto(s)
Regiones no Traducidas 5' , Empalme del ARN , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Análisis de Secuencia de ARN , Trans-Empalme , Transcripción Genética , Trypanosoma/genética
15.
BMC Bioinformatics ; 7: 336, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16827924

RESUMEN

BACKGROUND: Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB http://bioinfo.icgeb.res.in/repeats/ is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. DESCRIPTION: ProtRepeatsDB (v1.2) consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO) annotation IDs and regular expressions (REGEXP) describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. CONCLUSION: ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific repeat markers, interspecies variations and polymorphism.


Asunto(s)
Mapeo Cromosómico/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos de Proteínas , Proteínas/química , Proteínas/genética , Secuencias Repetitivas de Aminoácido , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Animales , Humanos , Almacenamiento y Recuperación de la Información/métodos , Datos de Secuencia Molecular , Alineación de Secuencia/métodos , Homología de Secuencia de Aminoácido
16.
Mol Biochem Parasitol ; 202(2): 1-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26393539

RESUMEN

Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.


Asunto(s)
Codón Iniciador/genética , Genes Protozoarios , ARN Lider Empalmado/genética , Ribosomas/metabolismo , Trypanosoma brucei brucei/genética , Evolución Molecular , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ARN
17.
Methods Mol Biol ; 1201: 207-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25388116

RESUMEN

High-throughput sequencing of cDNA copies of mRNA (RNA-seq) provides a digital read-out of mRNA levels over several orders of magnitude, as well as mapping the transcripts to the nucleotide level. Here we describe an RNA-seq approach that exploits the 39-nucleotide mini-exon or spliced leader (SL) sequence found at the 5' end of all Leishmania (and other trypanosomatid) mRNAs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leishmania/genética , ARN Mensajero , Análisis de Secuencia de ARN/métodos , Regulación de la Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/genética , ARN Protozoario , ARN Lider Empalmado
18.
PLoS Negl Trop Dis ; 9(1): e3404, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25568942

RESUMEN

Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.


Asunto(s)
Genoma de Protozoos , Filogenia , Proteínas Protozoarias/metabolismo , Trypanosoma/clasificación , Trypanosoma/genética , Regulación de la Expresión Génica , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Proteínas Protozoarias/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
19.
J Exp Med ; 210(2): 401-16, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23382545

RESUMEN

During its life cycle, Leishmania undergoes extreme environmental changes, alternating between insect vectors and vertebrate hosts. Elevated temperature and decreased pH, conditions encountered after macrophage invasion, can induce axenic differentiation of avirulent promastigotes into virulent amastigotes. Here we show that iron uptake is a major trigger for the differentiation of Leishmania amazonensis amastigotes, independently of temperature and pH changes. We found that iron depletion from the culture medium triggered expression of the ferrous iron transporter LIT1 (Leishmania iron transporter 1), an increase in iron content of the parasites, growth arrest, and differentiation of wild-type (WT) promastigotes into infective amastigotes. In contrast, LIT1-null promastigotes showed reduced intracellular iron content and sustained growth in iron-poor media, followed by cell death. LIT1 up-regulation also increased iron superoxide dismutase (FeSOD) activity in WT but not in LIT1-null parasites. Notably, the superoxide-generating drug menadione or H(2)O(2) was sufficient to trigger differentiation of WT promastigotes into fully infective amastigotes. LIT1-null promastigotes accumulated superoxide radicals and initiated amastigote differentiation after exposure to H(2)O(2) but not to menadione. Our results reveal a novel role for FeSOD activity and reactive oxygen species in orchestrating the differentiation of virulent Leishmania amastigotes in a process regulated by iron availability.


Asunto(s)
Hierro/metabolismo , Leishmania mexicana/metabolismo , Leishmania mexicana/patogenicidad , Animales , Secuencia de Bases , Transporte Biológico Activo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Femenino , Genes Protozoarios , Interacciones Huésped-Parásitos , Humanos , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Protozoario/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba , Virulencia
20.
Mol Biochem Parasitol ; 191(2): 53-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24080031

RESUMEN

Regions of transcription initiation and termination in kinetoplastid protists lack known eukaryotic promoter and terminator elements, although epigenetic marks such as histone variants and the modified DNA base J have been localized to these regions in Trypanosoma brucei, Trypanosoma cruzi, and/or Leishmania major. Phenotypes of base J mutants vary significantly across trypanosomatids, implying divergence in the epigenetic networks governing transcription during evolution. Here, we demonstrate that the histone variants H2A.Z and H2B.V are essential in L. major using a powerful quantitative plasmid segregation-based test. In contrast, H3.V is not essential for viability or normal growth in Leishmania. Steady-state transcript levels and the efficiency of transcription termination at convergent strand switch regions (SSRs) in H3V-null parasites were comparable to WT parasites. Our genetic tests show a conservation of histone variant phenotypes between L. major and T. brucei, unlike the diversity of phenotypes associated with genetic manipulation of the DNA base J modification.


Asunto(s)
Evolución Molecular , Histonas/metabolismo , Kinetoplastida/metabolismo , Leishmania major/metabolismo , Proteínas Protozoarias/metabolismo , Histonas/química , Histonas/genética , Kinetoplastida/química , Kinetoplastida/clasificación , Kinetoplastida/genética , Leishmania major/química , Leishmania major/clasificación , Leishmania major/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda