RESUMEN
An oxidative radical-promoted carbonylative cyclization strategy for the synthesis of phenanthren-9-(10H)-one frameworks from biaryl enones using aldehydes as the carbonyl radical sources is disclosed. The reaction proceeds through a sequential addition of a carbonyl radical to the olefin followed by cyclization with an aryl ring. The method is further extended to carbamoyl radicals generated from oxamic acids to access the corresponding phenanthrenones with amide functionalities.
RESUMEN
A variety of acrylamides holding an unactivated N-benzyl group underwent dearomative ipso-cyclization induced by sulfur-centered radicals (SCN/ SCF3/ SO2Ar) in the presence of ceric ammonium nitrate (CAN) as the oxidant to furnish azaspirocycles in good yields. This is the first report on ipso-dearomatization of N-benzyl acrylamides that proceeds without a substituent at the para-position of the aromatic ring. The developed conditions are also found to be suitable for substrates holding substituents such as F, NO2, OMe, OH, and OAc at the para-position. The reaction features water as the source of oxygen, is compatible with a variety of functional groups, and proceeds in a short time.
RESUMEN
Ceric ammonium nitrate (CAN)-promoted oxidative ipso-cyclization of unactivated biaryl ynones with S-centered radicals (SCN/SCF3) to access spiro[5,5]trienones has been established. This approach displayed excellent regioselectivity towards spirocyclization and tolerated a variety of functional groups. Dearomatization of hitherto unknown aryl/heteroaryl groups is also disclosed. DMSO is employed as a low-toxicity, inexpensive solvent as well as a source of oxygen.
RESUMEN
An unprecedented copper-catalyzed ipso-annulation reaction of N-(p-methoxyaryl)propiolamides with 1,3-diketones has been developed, which enables the assembly of diketoalkylated spiro[4.5]trienones involving oxidative dearomatization in the presence of ammonium persulfate [(NH4)2S2O8] as the oxidant. This protocol was extended to biaryl ynones, efficiently affording the diketoalkylated spiro[5.5]trienones in good yields. The significance of the diketoalkyl functionality has been illustrated by further transformation into 3-pyrazoyl spiro-trienone, a structurally unique motif.
Asunto(s)
Cobre , Compuestos de Espiro , Catálisis , Ciclización , Cetonas , Estrés OxidativoRESUMEN
Phevalin, a cyclic nonribosomal peptide produced by Staphylococcus aureus, has intriguing biological properties. A synthetic route to access phevalin and similar pyrazinone natural products tyrvalin, leuvalin, phileucin, and a few synthetic analogs is described. The reaction sequence involves a one-pot carbamate deprotection/imine formation/aerobic oxidation to form the pyrazinone-containing products.
Asunto(s)
Productos Biológicos/síntesis química , Péptidos/síntesis química , Pirazinas/síntesis química , Productos Biológicos/química , Estructura Molecular , Péptidos/química , Pirazinas/química , Staphylococcus aureus/químicaRESUMEN
The irregular monoterpenoid sex pheromone of Pseudococcus longispinus and its enantiomer were prepared from the corresponding bornyl acetates. The use of readily accessible chiral starting materials and lactone-lactone rearrangement are the highlights of the present synthesis. The biological activities of the two enantiomers and racemic mixture were tested in a New Zealand vineyard. The (S)-(+)-enantiomer was significantly more attractive to P. longispinus males than the racemic mixture or the (R)-(-)-enantiomer.
Asunto(s)
Lactonas/química , Feromonas/síntesis química , Animales , Fenómenos Biológicos , Hemípteros/química , Masculino , Nueva Zelanda , EstereoisomerismoRESUMEN
A simple, fast and efficient method for allylation and propargylation of chlorosilanes through zinc mediation and ultrasound promotion is reported. As a direct application of the resulting bis-allylsilanes, three novel, constrained sila amino acids are prepared for the first time. The design and synthesis of the constrained sila analogue of GABA (γ-amino butyric acid) is a highlight of this work.
Asunto(s)
Aminoácidos/síntesis química , Silanos/síntesis química , Ultrasonido/métodos , Zinc/química , Aminoácidos/química , Silanos/química , Silicio/química , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/síntesis químicaRESUMEN
Preparation and assignment of absolute configurations to both enantiomers of the sex pheromone of the longtailed mealybug, an irregular monoterpenoid with extraordinary biological activity, has been completed. Comparison of the biological activities of both enantiomers and the racemate in field trials showed that the (S)-(+)-enantiomer was highly attractive to male mealybugs, strongly suggesting that female longtailed mealybugs produce this enantiomer. The (R)-(-)-enantiomer was benign, being neither attractive nor inhibitory.
Asunto(s)
Hemípteros/química , Atractivos Sexuales/química , Atractivos Sexuales/aislamiento & purificación , Animales , Cristalografía por Rayos X , Femenino , Hemípteros/fisiología , Masculino , Estructura Molecular , Conducta Sexual Animal , EstereoisomerismoRESUMEN
Growing global demand for new molecules to treat tuberculosis has created an urgent need to develop novel strategies to combat the menace. BM212 related compounds were found to be potent anti-TB agents and they inhibit mycolic acid transporter, MmpL3, a known potent drug target from Mycobacterium tuberculosis. In order to enhance their inhibitory potency, several silicon analogues of diarylpyrroles related to BM212 were designed, synthesized, and evaluated for anti-tubercular activities. In Alamar blue assay, most of the silicon-incorporated compounds were found to be more potent than the parent compound (BM212), against Mycobacterium tuberculosis (MIC = 1.7 µM, H37Rv). Docking results from the crystal structure of MmpL3 and silicon analogues as pharmacophore model also strongly correlate with the biological assays and suggest that the incorporation of silicon in the inhibitor scaffold could enhance their potency by stabilizing the hydrophobic residues at the binding pocket. The best docking hit, compound 12 showed an MIC of 0.1 µM against H37Rv with an acceptable in vitro ADME profile and excellent selectivity index. Overall, the present study indicates that, the designed silicon analogues, especially compound 12 could be a good inhibitor for an intrinsically flexible drug-binding pocket of MmpL3 and has potential for further development as anti-tubercular agents.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/química , Silicio/farmacología , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico , Proteínas Bacterianas/metabolismoRESUMEN
The RNA-binding protein Hu antigen R (HuR) is a post-transcriptional regulator critical in several types of diseases, including cancer, making it a promising therapeutic target. We have identified small-molecule inhibitors of HuR through a screening approach used in combination with fragment analysis. A total of 36 new compounds originating from fragment linking or structural optimization were studied to establish structure-activity relationships in the set. Two top inhibitors, 1c and 7c, were further validated by binding assays and cellular functional assays. Both block HuR function by directly binding to the RNA-binding pocket, inhibit cancer cell growth dependence of HuR, and suppress cancer cell invasion. Intraperitoneal administration of inhibitor 1c inhibits tumor growth as a single agent and shows a synergistic effect in combination with chemotherapy docetaxel in breast cancer xenograft models. Mechanistically, 1c interferes with the HuR-TGFB/THBS1 axis.
Asunto(s)
Neoplasias , Humanos , Xenoinjertos , Transformación Celular Neoplásica , Línea Celular TumoralRESUMEN
4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme for Mycobacterium tuberculosis (Mtb) survival and virulence and therefore an attractive target for a tuberculosis therapeutic. In this work, two modeling-informed approaches toward the isosteric replacement of the amidinourea moiety present in the previously reported PptT inhibitor AU 8918 are reported. Although a designed 3,5-diamino imidazole unexpectedly adopted an undesired tautomeric form and was inactive, replacement of the amidinourea moiety afforded a series of active PptT inhibitors containing 2,6-diaminopyridine scaffolds.
RESUMEN
BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms and motor complications of Parkinson's disease (PD). The intervention is expected to result in some cognitive changes, the nature of which is not uniform across the studies which have reported them. PD itself is associated with progressive cognitive decline and hence longitudinal follow-up studies with medically managed control group of patients are needed to explore the cognitive deficits attributable to DBS. METHODS: We conducted a prospective comparative observational study to assess the effects of bilateral STN DBS on cognition. Cognitive functions were assessed at baseline and after a minimum of two years after surgery, and compared with baseline and follow-up assessments in patients on medical management alone. RESULTS: Thirty-four patients with PD who underwent bilateral STN DBS and thirty-four medically managed patients participated in the study. At a mean follow-up of around 33 months, we found a significant decline in verbal fluency scores in the DBS group compared to those on medical management alone (1.15 ± 1.23 vs 0.59 ± 0.93, p = 0.034) and a trend for decline was noted in digit span test. There was no difference in the performance in tests addressing other cognitive domains, or tests of global cognitive function. No patient developed dementia. Motor functions and activities of daily living (ADL) were significantly better in the surgical group. CONCLUSION: STN DBS results in minor deficits in executive functions, particularly verbal fluency. These may be inconsequential, considering the marked improvement in motor functions and ADL.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Actividades Cotidianas , Cognición/fisiología , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Estudios Prospectivos , Núcleo Subtalámico/cirugíaRESUMEN
A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).
Asunto(s)
Proteínas Bacterianas/metabolismo , Guanidina/análogos & derivados , Mycobacterium tuberculosis/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Urea/análogos & derivados , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Guanidina/química , Guanidina/metabolismo , Guanidina/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Urea/química , Urea/metabolismo , Urea/farmacologíaRESUMEN
Mosquito control by personal protection is one of the most efficient ways of curtailing deadly diseases such as malaria and dengue with the potential to save millions of lives per year. DEET (N,N-diethyl-3-methyl benzamide) is currently considered as the gold standard for mosquito repellents, being used for the past several decades. Control by DEET, however, is being threatened by emerging resistance among mosquitoes. To address this concern and also to improve protection times, we synthesized a novel series of 25 silicon-containing acyl piperidines using acid-amine coupling protocol and tested their activity against Aedes aegypti in mosquito-repellent assays. Several compounds from this series appear to possess good mosquito-repellent properties. Most notably, at 0.5 mg/cm2 concentrations, the mean protection time for NDS100100 was 756 min, which was higher than that of DEET (616 min). The details of design, synthesis, and biological evaluation are discussed herein.
RESUMEN
Pancreatic cancer has poor prognosis and treatment outcomes due to its highly metastatic nature and resistance to current treatments. The RNA-binding protein (RBP) Hu-antigen R (HuR) is a central player in posttranscriptional regulation of cancer-related gene expression, and contributes to tumorigenesis, tumor growth, metastasis, and drug resistance. HuR has been suggested to regulate pancreatic cancer epithelial-to-mesenchymal transition (EMT), but the mechanism was not well understood. Here, we further elucidated the role HuR plays in pancreatic cancer cell EMT, and developed a novel inhibitor specifically interrupting HuR-RNA binding. The data showed that HuR binds to the 3'-UTR of the mRNA of the transcription factor Snail, resulting in stabilization of Snail mRNA and enhanced Snail protein expression, thus promoted EMT, metastasis, and formation of stem-like cancer cells (CSC) in pancreatic cancer cells. siRNA silencing or CRISPR/Cas9 gene deletion of HuR inhibited pancreatic cancer cell EMT, migration, invasion, and inhibited CSCs. HuR knockout cells had dampened tumorigenicity in immunocompromised mice. A novel compound KH-3 interrupted HuR-RNA binding, and KH-3 inhibited pancreatic cancer cell viability, EMT, migration/invasion in vitro KH-3 showed HuR-dependent activity and inhibited HuR-positive tumor growth and metastasis in vivo.
Asunto(s)
Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Transición Epitelial-Mesenquimal/genética , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Ratones , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/patología , Estabilidad del ARN/efectos de los fármacos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
In order to optimize a lead molecule for further development, bioisosteric replacements are generally adopted as one of the strategies. Silicon appears to be the right choice as a carbon isostere because of the similarity in chemical properties. Silicon can be strategically introduced in a molecule to modulate its druglike properties, providing medicinal chemists with an unconventional strategy for replacing a carbon atom. Silicon can also be introduced to replace other heteroatoms and can act as a surrogate of functional groups such as olefin and amide as well. The present Perspective focuses on the opportunities that silicon incorporation offers in drug discovery, with an emphasis on case studies where introduction of silicon has created a benefit over its analog. We have tried to highlight all the recent developments in the field and briefly discuss the challenges associated with them.
Asunto(s)
Descubrimiento de Drogas/métodos , Silicio/química , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Relación Estructura-ActividadRESUMEN
The structural similarity between an MmpL3 inhibitor BM212, and a cannabinoid receptor modulator rimonabant, prompted us to investigate the anti-tubercular activity of rimonabant and its analogues. Further optimization, particularly through incorporation of silicon into the scaffold, resulted in new compounds with significant improvement in anti-tubercular activity against Mycobacterium tuberculosis (H37Rv). The sila analogue 18a was found to be the most potent antimycobacterial compound (MIC, 31 ng/mL) from this series with an excellent selectivity index.
Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Reposicionamiento de Medicamentos , Piperidinas/química , Piperidinas/farmacología , Pirazoles/química , Pirazoles/farmacología , Antituberculosos/metabolismo , Antituberculosos/toxicidad , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Piperidinas/metabolismo , Piperidinas/toxicidad , Pirazoles/metabolismo , Pirazoles/toxicidad , Rimonabant , Relación Estructura-ActividadRESUMEN
Known morpholine class antifungals (fenpropimorph, fenpropidin, and amorolfine) were synthetically modified through silicon incorporation to have 15 sila-analogues. Twelve sila-analogues exhibited potent antifungal activity against different human fungal pathogens such as Candida albicans, Candida glabrata, Candida tropicalis, Cryptococcus neoformans, and Aspergillus niger. Sila-analogue 24 (fenpropimorph analogue) was the best in our hands, which showed superior fungicidal potential than fenpropidin, fenpropimorph, and amorolfine. The mode of action of sila-analogues was similar to morpholines, i.e., inhibition of sterol reductase and sterol isomerase enzymes of ergosterol synthesis pathway.
RESUMEN
Therapeutic options for brain infections caused by pathogens with a reduced sensitivity to drugs are limited. Recent reports on the potential use of linezolid in treating brain infections prompted us to design novel compounds around this scaffold. Herein, we describe the design and synthesis of various oxazolidinone antibiotics with the incorporation of silicon. Our findings in preclinical species suggest that silicon incorporation is highly useful in improving brain exposures. Interestingly, three compounds from this series demonstrated up to a 30-fold higher brain/plasma ratio when compared to linezolid thereby indicating their therapeutic potential in brain associated disorders.