RESUMEN
Biodegradable flocculants are rarely used in waste activated sludge (WAS) fermentation. This study introduces an alginate-based biodegradable flocculant (ABF) to enhance both the dewatering and degradation of WAS during its fermentation. Alginate was identified in structural extracellular polymeric substances (St-EPS) of WAS, with alginate-producing bacteria comprising â¼4.2% of the total bacterial population in WAS. Owing to its larger floc size, higher contact angle, and lower free energy resulting from the Lewis acid-base interaction, the addition of the prepared ABF with a network structure significantly improved the dewaterability of WAS and reduced capillary suction time (CST) by 72%. The utilization of ABF by an enriched alginate-degrading consortium (ADC) resulted in a 35.5% increase in the WAS methane yield owing to its higher hydrolytic activity on both ABF and St-EPS. Additionally, after a 30 day fermentation, CST decreased by 62% owing to the enhanced degradation of St-EPS (74.4%) and lower viscosity in the WAS + ABF + ADC group. The genus Bacteroides, comprising 12% of ADC, used alginate lyase (EC 4.2.2.3) and pectate lyase (EC 4.2.2.2 and EC 4.2.2.9) to degrade alginate and polygalacturonate in St-EPS, respectively. Therefore, this study introduces a new flocculant and elucidates its dual roles in enhancing both the dewaterability and degradability of WAS. These advancements improve WAS fermentation, resulting in higher methane production and lower CSTs.
Asunto(s)
Alginatos , Fermentación , Floculación , Aguas del Alcantarillado , Anaerobiosis , Eliminación de Residuos Líquidos , Biodegradación AmbientalRESUMEN
The accurate determination of waster sludge water content is crucial to sludge dewatering treatment and its disposal management. Though previous studies highlight the great advantages of low-field nuclear magnetic resonance (LF-NMR) in the determination of sludge water content, its accuracy and applicability are not well studied. Herein, this study investigated the settling of operating parameters and the properties of sludge samples on the accuracy and applicability of LF-NMR method in measuring sludge water content. The results showed that the setting of basic parameters such as standard curve, number of scanning times (NS) and sample weight affected the accuracy of sludge water content by LF-NMR. The standard calibration curve constructed by 3 g/L CuSO4, NS = 8 and the sample weight of about 5 g, were suitable for the accurate determination of sludge water content. Furthermore, the existence of magnetic substances in sludge can affect the distribution gradient of main magnetic field, and thus restricted the applicability of LF-NMR. The saturation magnetization of chemical reagents strongly correlated with the measured relative errors of sludge water content (r = 0.995, p < 0.01), the greater the saturation magnetization of the magnetic material, the greater the error of the test results. On the whole, it is necessary to fully consider the influence of process parameters and sludge properties to evaluate the accuracy and applicability of the LF-NMR method, rather than simply copying the parameters in literatures.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Agua/química , Espectroscopía de Resonancia MagnéticaRESUMEN
Pretreatment is widely used in sludge dewatering, however, its potentially impact on the subsequent sludge agricultural applications is often neglected. Here, the potential benefits and risks of the sludge with no pretreatment and with four most commonly used pretreatment methods in sludge agricultural applications were assessed using potted lettuce, an experimental crop. The results show that sewage sludge pretreatment methods can greatly affect its agricultural applications. The application of different pretreatment methods can potentially reduce the harm caused by pathogens. At low dosage (0.2â¯gâ¯kg-1), different sludge fertilizers promoted an increase in crop yield of 14.6% to 49.1%, and the concentrations of heavy metals in the crop and soil were controlled within safe ranges. At high dosage (8â¯gâ¯kg-1), crop yield using pretreated sludge (except anaerobic digestion) decreased by between 32.7% and 57.5%, but heavy metal pollution of both crop and soil increased. In terms of promoting crop growth and reducing heavy metal accumulation, untreated sludge was better than pretreated sludges and sludge with physical pretreatments was better than that with chemical pretreatments. Overall, this study clearly shows that the introduction of pretreatment in sludge dewatering can inevitably impact its agricultural land application.