Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Chem Biol ; 19(7): 900-910, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37095237

RESUMEN

Replicative errors contribute to the genetic diversity needed for evolution but in high frequency can lead to genomic instability. Here, we show that DNA dynamics determine the frequency of misincorporating the A•G mismatch, and altered dynamics explain the high frequency of 8-oxoguanine (8OG) A•8OG misincorporation. NMR measurements revealed that Aanti•Ganti (population (pop.) of >91%) transiently forms sparsely populated and short-lived Aanti+•Gsyn (pop. of ~2% and kex = kforward + kreverse of ~137 s-1) and Asyn•Ganti (pop. of ~6% and kex of ~2,200 s-1) Hoogsteen conformations. 8OG redistributed the ensemble, rendering Aanti•8OGsyn the dominant state. A kinetic model in which Aanti+•Gsyn is misincorporated quantitatively predicted the dA•dGTP misincorporation kinetics by human polymerase ß, the pH dependence of misincorporation and the impact of the 8OG lesion. Thus, 8OG increases replicative errors relative to G because oxidation of guanine redistributes the ensemble in favor of the mutagenic Aanti•8OGsyn Hoogsteen state, which exists transiently and in low abundance in the A•G mismatch.


Asunto(s)
Daño del ADN , ADN , Humanos , Emparejamiento Base , ADN/química , Mutagénesis
2.
J Am Chem Soc ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028837

RESUMEN

NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.

3.
J Am Chem Soc ; 146(29): 19686-19689, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991204

RESUMEN

Biomolecular condensates can influence cellular function in a number of ways, including by changing the structural dynamics and conformational equilibria of the molecules partitioned within them. Here we use methyl transverse relaxation optimized spectroscopy (methyl-TROSY) NMR in conjunction with 2'-O-methyl labeling of RNA to characterize the thermodynamics and kinetics of RNA-RNA base pairing in condensates formed by the C-terminal intrinsically disordered region of CAPRIN1, an RNA-binding protein involved in RNA transport, translation, and stability. CAPRIN1 condensates destabilize RNA-RNA base pairing, resulting from a ∼270-fold decrease and a concomitant ∼15-fold increase in the on- and off-rates for duplex formation, respectively. The ∼30-fold slower diffusion of RNA single strands within the condensed phase partially accounts for the reduced on-rate, but the further ∼9-fold reduction likely reflects shedding of CAPRIN1 chains that are interacting with the RNA prior to hybridization. Our study emphasizes the important role of protein solvation in modulating nucleic acid recognition processes inside condensates.


Asunto(s)
Hibridación de Ácido Nucleico , ARN , Termodinámica , ARN/química , Cinética , Conformación de Ácido Nucleico , Emparejamiento Base , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Separación de Fases
4.
Nucleic Acids Res ; 48(21): 12365-12379, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33104789

RESUMEN

2'-O-Methyl (Nm) is a highly abundant post-transcriptional RNA modification that plays important biological roles through mechanisms that are not entirely understood. There is evidence that Nm can alter the biological activities of RNAs by biasing the ribose sugar pucker equilibrium toward the C3'-endo conformation formed in canonical duplexes. However, little is known about how Nm might more broadly alter the dynamic ensembles of flexible RNAs containing bulges and internal loops. Here, using NMR and the HIV-1 transactivation response (TAR) element as a model system, we show that Nm preferentially stabilizes alternative secondary structures in which the Nm-modified nucleotides are paired, increasing both the abundance and lifetime of low-populated short-lived excited states by up to 10-fold. The extent of stabilization increased with number of Nm modifications and was also dependent on Mg2+. Through phi-value analysis, the Nm modification also provided rare insights into the structure of the transition state for conformational exchange. Our results suggest that Nm could alter the biological activities of Nm-modified RNAs by modulating their secondary structural ensembles as well as establish the utility of Nm as a tool for the discovery and characterization of RNA excited state conformations.


Asunto(s)
Duplicado del Terminal Largo de VIH , Magnesio/química , Procesamiento Postranscripcional del ARN , ARN Viral/química , Emparejamiento Base , Cationes Bivalentes , Teoría Funcional de la Densidad , VIH-1/química , Magnesio/metabolismo , Espectroscopía de Resonancia Magnética , Metilación , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Viral/genética , ARN Viral/metabolismo , Termodinámica
5.
J Magn Reson ; 362: 107667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626504

RESUMEN

Solution NMR spectroscopy has tremendous potential for providing atomic resolution insights into the interactions between proteins and nucleic acids partitioned into condensed phases of phase-separated systems. However, the highly viscous nature of the condensed phase challenges applications, and in particular, the extraction of quantitative, site-specific information. Here, we present a delayed decoupling-based HMQC pulse sequence for methyl-TROSY studies of 'client' proteins and nucleic acids partitioned into 'scaffold' proteinaceous phase-separated solvents. High sensitivity and excellent quality spectra are recorded of a nascent form of superoxide dismutase and of a small RNA fragment partitioned into CAPRIN1 condensates.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , ARN , ARN/química , Resonancia Magnética Nuclear Biomolecular/métodos , Pliegue de Proteína , Proteínas/química , Superóxido Dismutasa/química , Condensados Biomoleculares/química , Algoritmos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda