Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Waste Manag ; 183: 290-301, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788497

RESUMEN

This study aims to investigate the microbiological working environment of biowaste workers, focusing on airborne fungal and bacterial species exposure, size distribution, and species on workers' hands. The research, conducted across six plants with 45 personal exposure assessments, revealed a total of 150 bacterial species and 47 fungal species on workers' hands, including 19 and 9 species classified in risk class 2 (RC2), respectively. Workers' exposure analysis identified 172 bacterial and 32 fungal species, with several in RC2. In work areas, 55 anaerobic bacterial species belonging to RC2 were found. Different species compositions were observed in various particle size fractions, with the highest species richness for anaerobic bacteria in the fraction potentially depositing in the secondary bronchi and for fungi in the pharynx fraction. The geometric mean aerodynamic diameter (DG) of RC2 anaerobic bacteria was 3.9 µm, <1.6 µm for Streptomyces, 3.4 µm for Aspergillus, and 2.0 µm for Penicillium. Overlapping species were identified on workers' hands, in their exposure, and in work areas, with Bacillus amyloliquefaciens, Leuconostoc mesenteroides, Bacillus cereus, Enterococcus casseliflavus, and Aspergillus niger consistently present. While the majority of RC2 bacterial species lacked documented associations with occupational health problems, certain bacteria and fungi, including Bacillus cereus, Escherichia coli, Enterobacter, Klebsiella pneumonia, Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Lichtheimia corymbifera, Lichtheimia ramosa, and Paecilomyces variotii, have previously been linked to occupational health issues. In conclusion, biowaste workers were exposed to a wide range of microorganisms including RC2 species which would deposit in different parts of the airways.


Asunto(s)
Microbiología del Aire , Bacterias , Hongos , Exposición Profesional , Humanos , Hongos/clasificación , Hongos/aislamiento & purificación , Bacterias/clasificación , Mano/microbiología , Monitoreo del Ambiente , Exposición por Inhalación/estadística & datos numéricos , Contaminantes Ocupacionales del Aire/análisis
2.
Sci Total Environ ; 923: 171189, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447726

RESUMEN

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Asunto(s)
Antifúngicos , Proteínas Fúngicas , Antifúngicos/farmacología , Estudios Retrospectivos , Proteínas Fúngicas/genética , Hongos , Itraconazol , Aspergillus fumigatus , Pruebas de Sensibilidad Microbiana , Azoles
3.
Ann Work Expo Health ; 67(7): 831-846, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300561

RESUMEN

Indoor microbial exposure may cause negative health effects. Only little is known about the occupational microbial exposure in nursing homes and the factors that influence the exposure. The exposure in nursing homes may be increased due to close contact with elderly persons who may carry infectious or antimicrobial-resistant microorganisms and due to handling of laundry, such as used clothing and bed linen. We investigated the microbial exposure in 5 nursing homes in Denmark, by use of personal bioaerosol samples from different groups of staff members taken during a typical working day, stationary bioaerosol measurements taken during various work tasks, sedimented dust samples, environmental surface swabs, and swabs from staff members' hands. From the samples, we explored bacterial and fungal concentrations and species composition, endotoxin levels, and antimicrobial resistance in Aspergillus fumigatus isolates. Microbial concentrations from personal exposure samples differed among professions, and geometric means (GM) were 2,159 cfu/m3 (84 to 1.5 × 105) for bacteria incubated on nutrient agar, 1,745 cfu/m3 (82 to 2.0 × 104) for bacteria cultivated on a Staphylococcus selective agar, and 16 cfu/m3 air for potential pathogenic fungi incubated at 37 °C (below detection limit to 257). Bacterial exposures were elevated during bed making. On surfaces, the highest bacterial concentrations were found on bed railings. The majority of bacterial species found were related to the human skin microflora, such as different Staphylococcus and Corynebacterium species. Endotoxin levels ranged from 0.02 to 59.0 EU/m3, with a GM of 1.5 EU/m3. Of 40 tested A. fumigatus isolates, we found one multiresistant isolate, which was resistant towards both itraconazole and voriconazole, and one isolate resistant towards amphotericin B. In conclusion, we give an overview of the general microbial exposure in nursing homes and show that microbial exposures are higher for staff with more care and nursing tasks compared with administrative staff.


Asunto(s)
Contaminantes Ocupacionales del Aire , Antiinfecciosos , Exposición Profesional , Humanos , Anciano , Exposición Profesional/análisis , Endotoxinas/análisis , Agar , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente , Bacterias , Staphylococcus
4.
Waste Manag ; 167: 173-182, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269581

RESUMEN

Biowaste pretreatment plants have been built within the last years in Denmark in order to recycle pre-sorted biowaste from houses, restaurants, and industry. We investigated the association between exposure and health at six biowaste pretreatment plants (visited twice) across Denmark. We measured the personal bioaerosol exposure, took blood samples, and administered a questionnaire. Thirty-one persons participated, 17 of them twice, resulting in 45 bioaerosol samples, 40 blood samples, and questionnaire answers from 21 persons. We measured exposure to bacteria, fungi, dust, and endotoxin, the total inflammatory potential of the exposures, and serum levels of the inflammatory markers serum amyloid A (SAA), high sensitivity C-reactive protein (hsCRP), and human club cell protein (CC16). Higher exposures to fungi and endotoxin were found for workers with tasks inside the production area compared to workers with main tasks in the office area. A positive association was found between the concentration of anaerobic bacteria and hsCRP and SAA, whereas bacteria and endotoxin were inversely associated with hsCRP and SAA. A positive association between hsCRP and the fungal species Penicillium digitatum and P. camemberti were found, whereas an inverse association between hsCRP and Aspergillus niger and P. italicum were found. Staff with tasks inside the production area reported more symptoms of the nose than those working in the office area. To conclude, our results indicate that workers with tasks inside the production area are exposed to elevated levels of bioaerosols, and that this may affect workers' health negatively.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Proteína C-Reactiva , Monitoreo del Ambiente/métodos , Bacterias , Endotoxinas/análisis , Plantas , Inflamación/inducido químicamente , Polvo/análisis , Microbiología del Aire , Hongos , Aerosoles
5.
Waste Manag ; 139: 250-257, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979353

RESUMEN

Electrostatic dust cloths have previously been used to study microorganisms in settled dust by placing the cloths horizontally on surfaces (called Electrostatic Dust Collectors, EDC). In this study, we investigate whether the same cloths, henceforth called 'E-Cloths', can be used to study accumulation of microorganisms and endotoxin on workers' clothes. This was studied as current methods have limitations. It was examined for waste collection workers, as their work environment is associated with elevated exposure to microorganisms and endotoxin. Each worker received a kit with a T-shirt with an attached E-Cloth on the front, a instruction letter, and a questionnaire. Workers wore the T-shirts during the next two workdays. Unaffected by waste type collected, it was possible to measure the accumulation of bacteria, fungi, and endotoxin from the work environment on the E-Cloths. Geometric mean concentration of 9 × 106 CFU bacteria/m2, 1 × 107 CFU fungi/m2, and 4 × 104 endotoxin units/m2 were found. In total, 100 different bacterial and 25 fungal species were found. The genus Bacillus (with 18 species) and Brevibacterium aurantiacum were among the dominating bacteria. For fungi, Penicillium brevicompactum, P. commune, Penicillium italicum, and Aspergillus niger were most often found. Importantly, mainly environmental bacteria and fungi had accumulated on the E-Cloths and only few skin-related bacterial species were present, showing that accumulation had happened from the work exposure and not workers' skin. In conclusion, the T-shirts with an E-Cloth can be used as a self-administered method for measurement of accumulation of microorganisms and endotoxin from the work environment on waste collection workers' clothes.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Microbiología del Aire , Contaminantes Ocupacionales del Aire/análisis , Vestuario , Polvo/análisis , Endotoxinas/análisis , Monitoreo del Ambiente , Estudios de Factibilidad , Hongos , Humanos , Exposición Profesional/análisis
6.
Environ Int ; 161: 107112, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35091375

RESUMEN

Work clothes may act as a vector for the transport of microorganisms leading to second-hand exposure; however, this has not been studied in work environments. We investigated whether microorganisms accumulate on workers' clothes in environments with elevated microbial exposures, and whether they are transported with the clothes and subsequently resuspended to the air. To study this, we selected waste collection workers and potential transport of bacteria and fungi to waste truck cabs via clothes, and compared the microbial communities within truck cabs, in waste collection workers' personal exposure, and on clean T-shirts worn by the workers. Microbial communities were also investigated for the presence of potentially harmful microorganisms. Results showed that microorganisms accumulated in large quantities (GM = 3.69 × 105 CFU/m2/h for bacteria, GM = 8.29 × 104 CFU/m2/h for fungi) on workers' clothes. The concentrations and species composition of airborne fungi in the truck cabs correlated significantly with the accumulation and composition of fungi on clothes and correlated to concentrations (a trend) and species composition of their personal exposures. The same patterns were not found for bacteria, indicating that work clothes to a lesser degree act as a vector for bacteria under waste collection workers' working conditions compared to fungi. Several pathogenic or allergenic microorganisms were present, e.g.: Klebsiella oxytoca, K. pneumoniae, Proteus mirabilis, Providencia rettgeri, Pseudomonas aeruginosa, and Aspergillus fumigatus, A. glaucus, A. nidulans, A. niger, and various Penicillium species. The potential 'take-home' exposure to these microorganisms are of most concern for immunocompromised or atopic individuals or people with open wounds or cuts. In conclusion, the large accumulation of microorganisms on workers' clothes combined with the overlap between fungal species for the different sample types, and the presence of pathogenic and allergenic microorganisms forms the basis for encouragement of good clothing hygiene during and post working hours.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Microbiología del Aire , Monitoreo del Ambiente , Hongos , Humanos , Exposición Profesional/análisis
7.
Sci Total Environ ; 791: 148287, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139489

RESUMEN

In many countries, the management of household waste has recently changed with an increased focus upon waste sorting resulting in lower collection frequency for some waste fractions. A consequence of this is the potential for increased growth of microorganisms in the waste before collection, which can lead to an increased exposure via inhalation for waste collection workers. Through a review of the literature, we aimed to evaluate risks caused by waste collecting workers' exposure to bioaerosols and to illuminate potential measures to reduce the exposure. Across countries and waste types, median exposure to fungi, bacteria, and endotoxin were typically around 104 colony forming units (cfu)/m3, 104 cfu/m3, and 10 EU/m3, respectively. However, some studies found 10-20+ times higher or lower median exposure levels. It was not clear how different types of waste influence the occupational exposure levels. Factors such as high loading, ventilation in and cleaning of drivers' cabs, increased collection frequency, waste in sealed sacks, and use of hand sanitizer reduce exposure. Incidences of gastrointestinal problems, irritation of the eye and skin and symptoms of organic dust toxic syndrome have been reported in workers engaged in waste collection. Several studies reported a correlation between bioaerosol exposure level and reduced lung function as either a short or a long term effect; exposure to fungi and endotoxin is often associated with an inflammatory response in exposed workers. However, a better understanding of the effect of specific microbial species on health outcomes is needed to proceed to more reliable risk assessments. Due to the increasing recycling effort and to the effects of global warming, exposure to biological agents in this working sector is expected to increase. Therefore, it is important to look ahead and plan future measures as well as improve methods to prevent long and short-term health effects.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Microbiología del Aire , Contaminantes Ocupacionales del Aire/análisis , Bacterias , Polvo/análisis , Endotoxinas/análisis , Hongos , Humanos , Exposición Profesional/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda