Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Inorg Chem ; 58(8): 4921-4934, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30919619

RESUMEN

The abolition of environmental pollutants and production of hydrogen (H2) from water using a heterogeneous photocatalyst is a demanding science of the current scenario to solve the increasing environmental pollution and worldwide energy catastrophe in modern life. To validate this purpose, the design of low-cost and durable semiconductor-based photocatalysts with great light absorption capacity becomes the most challenging issue for researchers. Regarding this, herein the phosphotungstic acid (HPW)-anchored Zr6O4(OH)4(BDC)6 (UiO-66) metal-organic framework (MOF), i.e., HPW@UiO-66, has been prepared by a hydrothermal method and is efficient, stable, and capable of harvesting solar energy toward the degradation of tetracycline hydrochloride (TCH) and H2 production in the presence of a sacrificial donor. The ionic interaction between HPW and UiO-66 plays a key role toward the photostability and charge-transfer mechanism of the composite and is well characterized with X-ray diffraction, UV diffuse-reflectance spectroscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. A total of 30 wt % HPW@UiO-66 shows a maximum degradation of about 87.24% of a 20 ppm TCH solution in 60 min of solar-light irradiation and about 353.89 µmol/h of H2 production. The conduction- and valence-band potentials are well characterized with Mott-Schottky measurement and a delay charge recombination process through electrochemical impedance spectroscopy. The proposed mediator-free Z-scheme-oriented electron-hole migration route is well supported by photoluminescence, and the scavenger test well explains the better charge-carrier separation and high catalytic performance of the prepared composite. This research will bestow an advantageous blueprint to fabricate novel and challenging photocatalysts toward the photocatalytic treatment of environmental pollutants and H2 evolution.

2.
Langmuir ; 34(30): 8758-8766, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29969273

RESUMEN

Paper-based microfluidic devices are rapidly becoming popular as a platform for developing point-of-care medical diagnostic tests. However, the design of these devices largely relies on trial and error, owing to a lack of proper understanding of fluid flow through porous membranes. Any porous material having pores of multiple sizes contains partially saturated regions, i.e., regions where less than 100% of the pores are filled with fluid. The capillary pressure and permeability of the material change as a function of the extent of saturation. Although methods to measure these relationships have been developed in other fields of study, these methods have not yet been adapted for paper for use by the larger community of analytical chemists. In the current work, we present a set of experimental methods that can be used to measure the relationships between capillary pressure, permeability, and saturation for any commercially available paper membrane. These experiments can be performed using commonly available lab instruments. We further demonstrate the use of the Richards equation in modeling imbibition into two-dimensional paper networks, thus adding new capability to the field. Predictions of spatiotemporal saturation from the model were in strong agreement with experimental measurements. To make these methods readily accessible to a wide community of chemists, biologists, and clinicians, we present the first report of a simple protocol to measure the flow rates considering the effect of partial saturation. Use of this protocol could drastically reduce the trial and error involved in designing paper-based microfluidic devices.

3.
Langmuir ; 32(5): 1410-8, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26766772

RESUMEN

Higher capture efficiency of biomarkers in heterogeneous immunosensors would enable early detection of diseases. Several strategies are used to improve the capture efficiency of these immunosensors including the geometry of the system along with the transport and reaction parameters. Having a prior knowledge of the behavior of the above parameters would facilitate the design of an efficient immunosensor. While the contributions of the transport and reaction parameters toward understanding of the mechanism involved in capture have been well studied in the literature, their effect in combination with the geometry of the sensors has not been explored until now. In this work, we have experimentally demonstrated that the capture efficiency of the antigen-antibody systems is inversely related to the size of the sensor patch. The experimental system was simulated in order to get an in-depth understanding of the mechanism behind the experimental observation. Further, the extent of heterogeneity in the system was analyzed using the Sips isotherm to obtain the heterogeneity index (α) and the reaction rate constant (K(D)) as fitted parameters for a sensor patch of 1.5 mm radius. The experimental kinetic data obtained for the same sensor patch matched reasonably with the simulation results by considering K(D) as the global affinity constant, which indicated that our system can be considered to be homogeneous. Our simulation results associated with the size dependency of the capture efficiency were in agreement with the trends obtained in our experimental observations where an inverse relation was observed owing to the fact that the mass-transfer limitation decreases with the decrease in the size of the sensor patch. The possible underlying mechanism associated with size dependency of capture efficiency was discussed based on the time-dependent radial variation of captured antigens obtained from our simulation results. A study on the parametric variation was further conducted for the nonmixed and mixed systems on the transport (Deff), reaction (K(D)), and geometric parameters (R). Two different correlations were established for the nonmixed and mixed systems between the capture efficiency (f) and a nondimensional number (t(D)/t(R)) consisting of the above-mentioned parameters. Such unified relations will be useful in designing heterogeneous immunosensors and can be extended to microfluidic immunosensors.


Asunto(s)
Anticuerpos/química , Técnicas Biosensibles , Antígeno Prostático Específico/análisis , Anticuerpos/inmunología , Fluoresceínas/química , Microscopía Fluorescente , Tamaño de la Partícula , Antígeno Prostático Específico/inmunología , Silicio/química
4.
Analyst ; 140(19): 6579-87, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26288851

RESUMEN

Higher capture efficiency in heterogeneous immunosensors is desirable for the detection of cancer biomarkers at low concentrations. The process of the capture of these antigens is transport limited since the rates of antigen/antibody reactions are faster. In the case of non-flow systems, diffusive transport has contributions from both translational and rotational phenomena. Since the contribution of the rotational diffusivity is comparatively less explored in the literature, we have studied the same for three antigens ­ bovine serum albumin (BSA), prostate specific antigen (PSA) and C-reactive proteins (CRP). We quantified the rotational diffusivities using the time resolved fluorescence anisotropy method, and further quantified the contribution of the rotational diffusivities to the overall diffusivity of the antigens, and also studied the effect of the process parameters ­ temperature and pH of the solution. With an increase in temperature, the rotational diffusivity increased showing Arrhenius dependence while with the variation of pH, it showed a non-monotonic behavior having maxima closer to the isoelectric point of the corresponding antigens. This interesting behavior of the pH values could be attributed to lesser electro-viscous effects when the antigen molecule is neutral around its isoelectric point. The optimization of the pH and temperature for the immunosensors could be utilized to design efficient immunosensors.


Asunto(s)
Antígenos/análisis , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Rotación , Animales , Bovinos , Difusión , Concentración de Iones de Hidrógeno , Temperatura
6.
Anal Chim Acta ; 1309: 342671, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772664

RESUMEN

Electrochemical biosensors, known for their low cost, sensitivity, selectivity, and miniaturization capabilities, are ideal for point-of-care devices. The magnetic metal-organic framework (MMOF), synthesized using the in-situ growth method, consists of ferric salt, magnetic nanoparticles, histidine, and benzene tetracarboxylic acid. MMOF was sequentially modified with aptamer-biotin and streptavidin-horseradish peroxidase, serving as a detector for spike protein and a transducer converting electrochemical signals using H2O2-hydroquinone on a screen-printed electrode. MMOF facilitates easy washing and homogeneous deposition on the working electrode with a magnet, enhancing sensitivity and reducing noise. The physical and electrochemical properties of the modified MMOFs were thoroughly characterized using various analytical techniques. The aptasensors' performance achieved a detection limit of 6 pM for voltammetry and 5.12 pM for impedance spectroscopy in human serum samples. This cost-effective, portable MMOF platform is suitable for rapid point-of-care testing for SARS-CoV-2 spike proteins.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Estructuras Metalorgánicas/química , Glicoproteína de la Espiga del Coronavirus/análisis , Aptámeros de Nucleótidos/química , Humanos , Técnicas Biosensibles/métodos , SARS-CoV-2/aislamiento & purificación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , COVID-19/diagnóstico , COVID-19/virología , Nanopartículas de Magnetita/química , Electrodos
7.
Expert Rev Mol Diagn ; 24(6): 473-485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924448

RESUMEN

INTRODUCTION: Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses. AREAS COVERED: This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered. EXPERT OPINION: Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus , Virus Nipah , Humanos , Virus Nipah/genética , Infecciones por Henipavirus/diagnóstico , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/virología , Animales , Técnicas de Diagnóstico Molecular/métodos , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Zoonosis/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Brotes de Enfermedades
8.
ACS Sens ; 6(1): 91-99, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33382580

RESUMEN

Paper-based microfluidic devices are popular for their ability to automate multistep assays for chemical or biological sensing at a low cost, but the design of paper microfluidic networks has largely relied on experimental trial and error. A few mathematical models of flow through paper microfluidic devices have been developed and have succeeded in explaining experimental flow behavior. However, the reverse engineering problem of designing complex paper networks guided by appropriate mathematical models is largely unsolved. In this article, we demonstrate that a two-dimensional paper network (2DPN) designed to sequentially deliver three fluids to a test zone on the device can be computationally designed and experimentally implemented without experimental trial and error. This was accomplished by three new developments in modeling flow through paper networks: (i) coupling of the Richards equation of flow through porous media to the species transport equation, (ii) modeling flow through assemblies of multiple paper materials (test membrane and wicking pad), and (iii) incorporating limited-volume fluid sources. We demonstrate the application of this model in the optimal design of a paper-based signal-enhanced immunoassay for a malaria protein, PfHRP2. This work lays the foundation for the development of a computational design toolbox to aid in the design of paper microfluidic networks.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Inmunoensayo , Dispositivos Laboratorio en un Chip , Papel
9.
Appl Biochem Biotechnol ; 187(4): 1272-1284, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30218300

RESUMEN

Detection of minute quantities of target antigens in serum samples (consisting of a mixture of proteins/biomolecules) can be achieved by enhancement of the capture efficiencies of heterogeneous immunosensors. An important process parameter which affects the capture of target analytes in such immunosensors is the pH of the solution as the target proteins present in the serum samples are charged molecules. Here, we investigated the capture of prostate-specific antigens (PSAs), first in a mixed-analyte system wherein the solution contained two other non-specific proteins along with the target analyte, using the surface plasmon resonance spectroscopy. There are no reports on the detection of antigens in a mixed system based on the optimization of the pH values of the carrier fluid, and this is the motivation of the present work. Further, we studied interference effects caused by the presence of these non-specific proteins in the mixed-analyte systems by artificially increasing the ratio of the interfering proteins to that of the target protein. Eventually PSA spiked into the rabbit serum samples was captured through the optimization of the pH of the solution. We could detect PSA in the serum samples when diluted to 100 times or more, where the amounts of other interfering proteins were ~ 66 times that of the amount of PSA. This study proposes a heterogeneous immunosensor to detect the target analytes in the diluted serum samples by tuning pH the of solution mixture, which can be utilized to detect disease biomarkers in serum samples.


Asunto(s)
Análisis Químico de la Sangre/métodos , Inmunoensayo/métodos , Antígeno Prostático Específico/sangre , Resonancia por Plasmón de Superficie/métodos , Humanos , Concentración de Iones de Hidrógeno
10.
J Colloid Interface Sci ; 350(1): 132-9, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20638665

RESUMEN

A series of Cs salt of phosphotungstic acid (Cs-PTA) supported on MCM-41 (Cs-PTA/MCM-41) was synthesized by a wet impregnation method and thoroughly characterized by using various analytical techniques, viz. X-ray diffraction, UV-Vis diffused reflectance spectroscopy (UV-Vis DRS), nitrogen adsorption desorption, scanning electron microscopy (SEM), Infrared spectra (FTIR), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The spectroscopic results revealed that Cs-PTA is highly dispersed on a MCM-41 surface. The 50 wt.% Cs-PTA supported on MCM-41 showed remarkable catalytic performance toward acylation of anisole reaction. The catalyst is regenerable by simple calcinations without appreciable loss in catalytic activity.

11.
J Colloid Interface Sci ; 340(2): 209-17, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19782994

RESUMEN

The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively. The samples were characterized by nitrogen adsorption-desorption measurements, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and (29)Si and (27)Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectra. X-ray diffraction patterns indicate that the modified materials retain the standard MCM-41 structure. TPR patterns show the two-step reduction of Cu species. TPD study shows that Cu-impregnated Al-MCM-41 samples are more acidic than Al-MCM-41. From the MAS-NMR it was confirmed that most of the Al atoms are present tetrahedrally within the framework and some are present octahedrally in extraframework position. Impregnation of Cu shifted Al to the extraframework position. The catalytic activity of the samples toward hydroxylation of phenol in aqueous medium was evaluated using H(2)O(2) as the oxidant at 80 degrees C. The effects of reaction parameters such as temperature, catalyst amount, amount of H(2)O(2), and solvent were also investigated. Sample containing 4wt.% copper-loaded Al-MCM-41-100 showed high phenol conversion (78%) with 68% catechol and 32% hydroquinone selectivity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda