Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 25(28): 19106-19115, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37428001

RESUMEN

Diglyme co-intercalation with sodium ion (Na+) into graphite can enable the use of graphite as a potential anode for sodium-ion batteries (NIBs). However, the presence of diglyme molecules in Na+ intercalated graphite limits Na+ storage capacity and increases volume changes. In this work, the effect of functionalising diglyme molecules with fluoro and hydroxy groups on Na+ storage properties in graphite were computationally studied. It was found that the functionalisation can significantly alter the binding between sodium and the solvent ligand as well as between the sodium-solvent complex and the graphite. The hydroxy-functionalised diglyme exhibits the strongest binding to the graphite of the other functionalised diglyme compounds considered. The calculations also reveal that the graphene layer affects the electron distribution on the diglyme molecule and Na, so the diglyme complexed Na binds more strongly to the graphene layer than the Na alone. We also propose a mechanism for the early stages of the intercalation mechanism that involves a reorientation of the sodium-diglyme complex and suggest how the solvent can be designed to optimise the co-intercalation process.

2.
Phys Chem Chem Phys ; 23(4): 3063-3070, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33491022

RESUMEN

Expanded graphite (EG) has been shown to be able to store a significant amount of sodium ions. Understanding the alkali metal ion storage in EG is of importance for improving EG electrode performance. In this work, the effect of interlayer distance of pure EG on sodium ion storage was investigated using the density functional theory calculation method. EG structure models with interlayer distances ranging from 3.4 Å to 10.0 Å were simulated. It was found that EG can store a fairly large amount of sodium ions through an intercalation mechanism without any contributions from the co-intercalation mechanism or adsorption mechanism if the interlayer distance is larger than 4.4 Å and smaller than 6.0 Å. It was also found that an interlayer distance of 6.0 Å gives strong binding energy of sodium ions with EG forming thermodynamically stable sodium-graphite intercalation compound (Na-GIC). However, when the interlayer distance becomes larger than 6.0 Å, the binding energy between sodium ions and EG becomes weaker. Computational results have also shown that the enthalpy of formation of the Na-GIC of EG is energetically more favourable when the interlayer distance is increased. An optimal d-spacing of EG for sodium ion storage was identified in this work. These findings provide atomistic insights into sodium ion storage in EG, providing guidelines for the design of graphite-based anode materials for sodium-ion batteries.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda