RESUMEN
High-grade neuroendocrine cervical cancers (NETc) are exceedingly rare, highly aggressive tumors. We analyzed 64 NETc tumor samples by whole-exome sequencing (WES). Human papillomavirus DNA was detected in 65.6% (42/64) of the tumors. Recurrent mutations were identified in PIK3CA, KMT2D/MLL2, K-RAS, ARID1A, NOTCH2, and RPL10. The top mutated genes included RB1, ARID1A, PTEN, KMT2D/MLL2, and WDFY3, a gene not yet implicated in NETc. Somatic CNV analysis identified two copy number gains (3q27.1 and 19q13.12) and five copy number losses (1p36.21/5q31.3/6p22.2/9q21.11/11p15.5). Also, gene fusions affecting the ACLY-CRHR1 and PVT1-MYC genes were identified in one of the eight samples subjected to RNA sequencing. To resolve evolutionary history, multiregion WES in NETc admixed with adenocarcinoma cells was performed (i.e., mixed-NETc). Phylogenetic analysis of mixed-NETc demonstrated that adenocarcinoma and neuroendocrine elements derive from a common precursor with mutations typical of adenocarcinomas. Over one-third (22/64) of NETc demonstrated a mutator phenotype of C > T at CpG consistent with deficiencies in MBD4, a member of the base excision repair (BER) pathway. Mutations in the PI3K/AMPK pathways were identified in 49/64 samples. We used two patient-derived-xenografts (PDX) (i.e., NET19 and NET21) to evaluate the activity of pan-HER (afatinib), PIK3CA (copanlisib), and ATR (elimusertib) inhibitors, alone and in combination. PDXs harboring alterations in the ERBB2/PI3K/AKT/mTOR/ATR pathway were sensitive to afatinib, copanlisib, and elimusertib (P < 0.001 vs. controls). However, combinations of copanlisib/afatinib and copanlisib/elimusertib were significantly more effective in controlling NETc tumor growth. These findings define the genetic landscape of NETc and suggest that a large subset of these highly lethal malignancies might benefit from existing targeted therapies.
Asunto(s)
Adenocarcinoma , Carcinoma Neuroendocrino , Tumores Neuroendocrinos , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Afatinib , Filogenia , Fosfatidilinositol 3-Quinasas/genética , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genética , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Análisis Mutacional de ADNRESUMEN
INTRODUCTION: Epithelial ovarian cancer (EOC) is associated with the highest gynecologic cancer mortality. The development of novel, effective combinations of targeted therapeutics remains an unmet medical need. We evaluated the preclinical activity of datopotamab deruxtecan (Dato-Dxd), a novel TROP2 targeting antibody drug conjugate (ADC) in ovarian cancer cell lines and xenografts with variable TROP2 expression. METHODS: In vitro cell viability with Dato-DXd was assessed using flow-cytometry based assays against a panel of EOC primary cell lines with variable TROP2 expression. Fluorescent anti-phospho-histone H2A.X antibody was used to detect dsDNA breaks by flow-cytometry. The in vivo antitumor activity of Dato-DXd was tested in TROP2 overexpressing xenografts. RESULTS: TROP2 overexpressing (3+) and moderate (2+) expressing EOC cell lines demonstrated higher sensitivity to Dato-DXd when compared to TROP2 negative tumors. Dato-DXd exposed TROP2+ EOC demonstrated increased dsDNA breaks and Annexin-V positivity (a marker of apoptosis) when compared to tumor cells exposed to the non-binding conjugate (p = 0.001 and p = 0.016, respectively). Dato-DXd induced significant antibody-dependent cellular cytotoxicity (ADCC) in the presence of peripheral-blood-lymphocytes. While negligible activity was detected against EOC cell lines with low TROP2 expression, Dato-DXd demonstrated significant bystander killing against tumor cells with low/negligible TROP2 when such cells were admixed with TROP2 3+ tumor cells in vitro. Dato-DXd showed tumor growth suppression against EOC cell line derived xenograft models that overexpress TROP2 at 3+ levels, prolonging survival when compared to controls, with minimal toxicity. CONCLUSION: Dato-DXd shows promising preclinical activity against TROP2 overexpressing ovarian cancers. Future clinical trials in ovarian cancer patients are warranted.
Asunto(s)
Antígenos de Neoplasias , Carcinoma Epitelial de Ovario , Moléculas de Adhesión Celular , Inmunoconjugados , Neoplasias Ováricas , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/antagonistas & inhibidores , Animales , Inmunoconjugados/farmacología , Antígenos de Neoplasias/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/patología , Ratones , Ratones Desnudos , Supervivencia Celular/efectos de los fármacosRESUMEN
OBJECTIVES: Uterine carcinosarcomas (UCS) are rare, biologically aggressive tumors. Since UCS may harbor mutations in RAS/MAPK pathway genes we evaluated the preclinical in vitro and in vivo efficacy of the RAF/MEK clamp avutometinib in combination with the focal adhesion kinase (FAK) inhibitors defactinib or VS-4718 against multiple primary UCS cell lines and xenografts. METHODS: Whole-exome-sequencing (WES) was used to evaluate the genetic landscape of 5 primary UCS cell lines. The in vitro activity of avutometinib ± FAK inhibitor was evaluated using cell viability and cell cycle assays against primary UCS cell lines. Mechanistic studies were performed using western blot assays while in vivo experiments were completed in UCS tumor bearing mice treated with avutometinib ± FAK inhibitor by oral gavage. RESULTS: WES results demonstrated multiple UCS cell lines harbor genetic alterations including KRAS, PTK2, BRAF, MAP2K, and MAP2K1, potentially sensitizing to FAK and RAF/MEK inhibition. Four out of five of the UCS cell lines demonstrated in vitro sensitivity to FAK and/or RAF/MEK inhibition when used alone or in combination. By western blot assays, exposure of UCS cell lines to the combination of defactinib/avutometinib demonstrated decreased phosphorylated (p)-FAK as well as decreased p-ERK. In vivo, the combination of avutometinib/VS-4718 demonstrated superior tumor growth inhibition and longer survival compared to single agent treatment and controls starting at day 10 (p < 0.002) in UCS xenografts. CONCLUSION: The combination of avutometinib and defactinib demonstrates promising in vitro and in vivo anti-tumor activity against primary UCS cell lines and xenografts.
Asunto(s)
Carcinosarcoma , Neoplasias Uterinas , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Animales , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Línea Celular Tumoral , Ratones , Carcinosarcoma/tratamiento farmacológico , Carcinosarcoma/patología , Carcinosarcoma/genética , Carcinosarcoma/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Indoles/farmacología , Quinasas raf/antagonistas & inhibidores , Quinasas raf/metabolismo , Quinasas raf/genética , Secuenciación del Exoma , Ratones Desnudos , Benzamidas , Pirazinas , SulfonamidasRESUMEN
OBJECTIVES: Low-grade-serous-ovarian-carcinoma (LGSOC) is characterized by a high recurrence rate and limited therapeutic options. About one-third of LGSOC contains mutations in MAPK pathway genes such as KRAS/NRAS/BRAF. Avutometinib is a dual RAF/MEK inhibitor while defactinib and VS-4718 are focal-adhesion-kinase-inhibitors (FAKi). We determined the preclinical efficacy of avutometinib±VS-4718 in LGSOC patient-derived-tumor-xenografts (PDX). METHODS: Whole-exome-sequencing (WES) was used to evaluate the genetic fingerprint of 3 patient-derived LGSOC (OVA(K)250, PERIT(M)17 and A(PE)148). OVA(K)250 tissue was successfully xenografted as PDX into female CB17/lcrHsd-Prkdc/SCID-mice. Animals were treated with either control, avutometinib, VS-4718, or avutometinib/ VS-4718 once daily five days on and two days off through oral gavage. Mechanistic studies were performed ex vivo using avutometinib±defactinib treated LGSOC tumor samples by western blot. RESULTS: WES results demonstrated wild-type KRAS in all 3 LGSOC. OVA(K)250 PDX showed gain-of-function mutations (GOF) in PTK2 and PTK2B genes, and loss-of-heterozygosity in ADRB2, potentially sensitizing to FAK and RAF/MEK inhibition. The combination of avutometinib/ VS-4718 demonstrated strong tumor-growth inhibition compared to controls starting at day 9 (p < 0.002) in OVA(K)250PDX. By 60 days, mice treated with avutometinib alone and avutometinib/VS-4718 were still alive; compared to median survival of 20 days in control-treated mice and of 35 days in VS-4718-treated mice (p < 0.0001). By western-blot assays exposure of OVA(K)250 to avutometinib, FAKi defactinib and their combination demonstrated decreased phosphorylated FAK (p-FAK) as well as decreased p-ERK. CONCLUSION: Avutometinib, and to a larger extent its combination with FAK inhibitor VS-4718, demonstrated promising in vivo activity against a KRAS wild-type LGSOC-PDX. These data support the ongoing registration-directed study (RAMP201/NCT04625270).
Asunto(s)
Quinasa 1 de Adhesión Focal , Neoplasias Ováricas , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Animales , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ratones , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/genética , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Secuenciación del Exoma , Benzamidas , Difenilamina/análogos & derivados , Pirazinas , SulfonamidasRESUMEN
The NCCN Guidelines for Ovarian Cancer/Fallopian Tube Cancer/Primary Peritoneal Cancer provide multidisciplinary diagnostic workup, staging, and treatment recommendations for this disease. These NCCN Guidelines Insights detail how the evolution of the use of PARP inhibitors as maintenance and single-agent regimens for the treatment of ovarian cancer informed panel recommendations in the guidelines.
Asunto(s)
Neoplasias de las Trompas Uterinas , Neoplasias Ováricas , Neoplasias Peritoneales , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/terapia , Neoplasias Ováricas/patología , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/diagnóstico , Neoplasias de las Trompas Uterinas/diagnóstico , Neoplasias de las Trompas Uterinas/terapia , Neoplasias de las Trompas Uterinas/patología , Oncología Médica/normas , Oncología Médica/métodos , Estadificación de Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéuticoRESUMEN
Adult granulosa cell tumor, the most common malignant ovarian sex cord-stromal tumor, harbors the characteristic mutation c.402C>G (p.C134W) in the FOXL2 gene in ~90% to 95% of cases. To date, no other variants of FOXL2 mutations have been identified in these tumors. Here we report the first case of an adult granulosa cell tumor with a novel FOXL2 point mutation c.398C>T (p.A133V) presenting in a 64-year-old postmenopausal woman. The patient underwent total hysterectomy and bilateral salpingo-oophorectomy for atypical endometrial hyperplasia and gross examination revealed an incidental 3.2 cm right ovarian mass with a solid, bright yellow, homogeneous cut surface. Microscopically, ~30% of the tumor showed a nested growth pattern composed of uniform tumor cells with oval nuclei and a moderate amount of pale cytoplasm, while the remaining areas consisted of a bland storiform fibromatous stroma. Reticulin stain demonstrated loss of the individual pericellular network within the nested areas, while the pericellular staining pattern was retained in the background stromal component. FOXL2 sequencing analysis was performed in both components and revealed a c.398C>T (p.A133V) mutation in the nested component, whereas wild-type FOXL2 sequence was identified in the fibromatous stroma. Sections from the uterus showed a low-grade endometrioid endometrial adenocarcinoma with superficial myometrial invasion. The patient underwent adjuvant vaginal cuff brachytherapy for the endometrial carcinoma and is alive and well at 8 months follow-up. This case illustrates that new FOXL2 mutations may be detected in ovarian sex cord-stromal tumors with increasing use of routine molecular testing, adding to the complexity of the pathologic diagnosis. In the right morphologic and clinical context, a FOXL2 mutation-even if it is different from the dominant hotspot mutation c.402C>G (p.C134W)-can support the diagnosis of adult granulosa cell tumor.
Asunto(s)
Proteína Forkhead Box L2 , Tumor de Células de la Granulosa , Neoplasias Ováricas , Femenino , Humanos , Proteína Forkhead Box L2/genética , Tumor de Células de la Granulosa/genética , Tumor de Células de la Granulosa/patología , Tumor de Células de la Granulosa/diagnóstico , Persona de Mediana Edad , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/diagnóstico , Mutación , Histerectomía , Mutación Puntual , SalpingooforectomíaRESUMEN
Targeted anti-HER2 therapy has been recently added to the standard treatment recommendations in endometrial serous carcinoma. Current eligibility requires testing for HER2 overexpression and/or gene amplification by immunohistochemistry and by fluorescence in situ hybridization. However, clinical trials have also demonstrated the efficacy of anti-HER2 drugs against activating ERBB2/HER2 mutations in a variety of solid tumor types, and fam-trastuzumab deruxtecan is now approved by the US Food and Drug Administration for HER2-mutant non-small cell lung cancer. This study aimed at evaluating the detailed clinical, histomorphological, immunohistochemical, and molecular characteristics of gynecologic malignancies with ERBB2/HER2 mutations. We identified 16 tumors with 19 ERBB2/HER2 mutations in our departmental archives: 11 endometrial primaries, 2 endocervical adenocarcinomas, 1 ovarian mucinous adenocarcinoma, 1 tubo-ovarian undifferentiated carcinoma, and 1 high-grade endometrioid adenocarcinoma of Mullerian origin. ERBB2/HER2 mutations most often involved the tyrosine kinase domain (52.6%), and the most frequent specific mutation was R678Q (31.6%), involving the juxtamembrane domain. More than half (54.5%) of endometrial carcinomas and half of all tumors were MMR-deficient, resulting from MSH6 loss in all but 2 tumors. None of the tumors (0%) were POLE-mutated, while 18.8% were TP53-mutated. HER2 IHC was negative (score 0 or 1+) in 12 tumors (67%) and equivocal (score 2+) in 4 tumors (33%), whereas none of the tumors were scored as HER2 3+. Score 2+ was associated with R678Q, L755S, I767M mutations, and ERBB2/HER2 rearrangement with a breakpoint in exon 23. Concurrent ERBB2/HER2 amplification was identified in 2 endometrial carcinomas, with HER2/CEP17 ratios of 3.1 and 3.5. We also queried the cBioportal database, which revealed 70 ERBB2/HER2-mutant gynecologic tumors with a total of 77 ERBB2/HER2 mutations, most often involving the active site of the tyrosine kinase domain (n=36; 46.8%), and the most common specific mutation was S310F (n=20; 26%), located in the extracellular domain. Our results provide important details regarding the clinicopathological and molecular associations of potentially actionable ERBB2/HER2 mutations in endometrial carcinoma and other gynecological cancer types and contribute to addressing clinical treatment needs and improving pathology testing recommendations in the future.
RESUMEN
Uterine leiomyosarcomas (uLMS) are aggressive tumors arising from the smooth muscle layer of the uterus. We analyzed 83 uLMS sample genetics, including 56 from Yale and 27 from The Cancer Genome Atlas (TCGA). Among them, a total of 55 Yale samples including two patient-derived xenografts (PDXs) and 27 TCGA samples have whole-exome sequencing (WES) data; 10 Yale and 27 TCGA samples have RNA-sequencing (RNA-Seq) data; and 11 Yale and 10 TCGA samples have whole-genome sequencing (WGS) data. We found recurrent somatic mutations in TP53, MED12, and PTEN genes. Top somatic mutated genes included TP53, ATRX, PTEN, and MEN1 genes. Somatic copy number variation (CNV) analysis identified 8 copy-number gains, including 5p15.33 (TERT), 8q24.21 (C-MYC), and 17p11.2 (MYOCD, MAP2K4) amplifications and 29 copy-number losses. Fusions involving tumor suppressors or oncogenes were deetected, with most fusions disrupting RB1, TP53, and ATRX/DAXX, and one fusion (ACTG2-ALK) being potentially targetable. WGS results demonstrated that 76% (16 of 21) of the samples harbored chromoplexy and/or chromothripsis. Clinically actionable mutational signatures of homologous-recombination DNA-repair deficiency (HRD) and microsatellite instability (MSI) were identified in 25% (12 of 48) and 2% (1 of 48) of fresh frozen uLMS, respectively. Finally, we found olaparib (PARPi; P = 0.002), GS-626510 (C-MYC/BETi; P < 0.000001 and P = 0.0005), and copanlisib (PIK3CAi; P = 0.0001) monotherapy to significantly inhibit uLMS-PDXs harboring derangements in C-MYC and PTEN/PIK3CA/AKT genes (LEY11) and/or HRD signatures (LEY16) compared to vehicle-treated mice. These findings define the genetic landscape of uLMS and suggest that a subset of uLMS may benefit from existing PARP-, PIK3CA-, and C-MYC/BET-targeted drugs.
Asunto(s)
Genotipo , Leiomiosarcoma/genética , Mutación , Fusión de Oncogenes , Neoplasias Uterinas/genética , Animales , Antineoplásicos/uso terapéutico , Femenino , Humanos , Leiomiosarcoma/tratamiento farmacológico , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida/métodos , Ftalazinas/administración & dosificación , Ftalazinas/uso terapéutico , Piperazinas/administración & dosificación , Piperazinas/uso terapéutico , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Quinazolinas/administración & dosificación , Quinazolinas/uso terapéutico , Neoplasias Uterinas/tratamiento farmacológicoRESUMEN
Hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment modality that aims to target the main site of tumor dissemination in ovarian cancer, the peritoneum, by combining the benefits of intraperitoneal chemotherapy with the synergistic effects of hyperthermia all during a single administration at the time of cytoreductive surgery. High-quality evidence currently only supports the use of HIPEC with cisplatin at the time of interval cytoreduction after neoadjuvant chemotherapy for stage III epithelial ovarian cancer. Many questions remain, including HIPEC's role at other timepoints in ovarian cancer treatment, who are optimal candidates, and specifics of HIPEC protocols. This article reviews the history of normothermic and hyperthermic intraperitoneal chemotherapy in ovarian cancer and evidence regarding HIPEC implementation and patient outcomes. Additionally, this review explores details of HIPEC technique and perioperative care, cost considerations, complication and quality of life data, disparities in HIPEC use, and unresolved issues.
Asunto(s)
Hipertermia Inducida , Neoplasias Ováricas , Femenino , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Calidad de Vida , Hipertermia Inducida/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/cirugía , Carcinoma Epitelial de Ovario/cirugía , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Procedimientos Quirúrgicos de Citorreducción/métodosRESUMEN
OBJECTIVES: Carcinosarcomas are highly aggressive gynecologic malignancies containing both carcinomatous and sarcomatous elements with heterogeneous HER2/neu expression and limited therapeutic options. We compared the efficacy of trastuzumab deruxtecan (DS-8201a), a novel HER2/neu-targeting antibody-drug conjugate (ADC) to an ADC isotype control (MAAA-9199) against primary uterine and ovarian carcinosarcomas in vitro and in vivo. METHODS: Twelve primary carcinosarcoma (CS) cell lines were evaluated for HER2/neu surface expression by immunohistochemistry (IHC) and by flow cytometry, and gene amplification by fluorescence in situ hybridization (FISH) assays. The in vitro experiments included cytotoxicity and bystander killing effect assays on three cell lines of variable HER2/neu expression. In vivo activity was studied in a mouse CS xenograft model of 3+ HER2/neu uterine CS. RESULTS: In vitro studies showed that DS-8201a was highly effective against uterine and ovarian CS cell lines demonstrating 3+ HER2/neu expression compared to MAAA-9199 control; there was no significant improvement in the 0 HER2/neu CS cell line. However, DS-8201a induced efficient bystander killing of 0 HER2/neu tumor cells when admixed with 3+ HER2/neu cells. In vivo studies confirmed that DS-8201a was more effective than MAAA-9199 in 3+ HER2/neu-expressing CS xenografts. CONCLUSION: DS-8201a may represent a novel and highly effective ADC against HER2/neu-expressing CS.
Asunto(s)
Carcinosarcoma , Inmunoconjugados , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Hibridación Fluorescente in Situ , Receptor ErbB-2/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Línea Celular Tumoral , Trastuzumab/uso terapéutico , Inmunoconjugados/uso terapéutico , Neoplasias Ováricas/patología , Carcinosarcoma/patologíaRESUMEN
INTRODUCTION: Ovarian cancer (OC) is associated with the highest gynecologic cancer mortality. The development of novel, effective combinations of targeted therapeutics remains an unmet medical need. We evaluated the preclinical efficacy of the Poly (ADP-ribose) polymerase (PARP) inhibitor (olaparib) and the pan-ErbB inhibitor (neratinib) as single agents and in combination in ovarian cancer cell lines and xenografts with variable HER2 expression. METHODS: In vitro cell viability with olaparib, neratinib, and their combination was assessed using flow-cytometry based assays against a panel of OC primary cell lines with variable HER2 expression. Immunoblotting experiments were performed to elucidate the mechanism of activity and synergism. The in vivo antitumor activity of the olaparib/neratinib combination versus single agents was tested in HER2 positive xenograft OC models. RESULTS: HER2 + OC cell lines demonstrated higher sensitivity to olaparib and neratinib when compared to HER2 negative tumors (i.e., IC50: 2.06 ± 0.33 µM vs. 39.28 ± 30.51 µM, p = 0.0035 for olaparib and 19.42 ± 2.63 nM vs. 235.0 ± 165.0 nM, p = 0.0035 for neratinib). The combination of olaparib with neratinib was more potent when compared to single-agent olaparib or neratinib both in vitro and in vivo, and demonstrated synergy in all primary HER2 + OC models. Western blot experiments showed neratinib decreased pHER2/neu while increased Poly(ADP-ribose) (PAR) enzymatic activity; olaparib increased pHER2/Neu expression and blocked PAR activatio. Olaparib/neratinib in combination decreased both pHER2/Neu as well as PAR activation. CONCLUSION: The combination of olaparib and neratinib is synergistic and endowed with remarkable preclinical activity against HER2+ ovarian cancers. This combination may represent a novel therapeutic option for ovarian cancer patients with HER2+, homologous recombination-proficient tumors resistant to chemotherapy.
Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Ribosa/uso terapéutico , Antineoplásicos/uso terapéutico , Ftalazinas/uso terapéutico , Neoplasias Ováricas/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Línea Celular TumoralRESUMEN
INTRODUCTION: Uterine leiomyosarcoma (uLMS) is a rare, highly aggressive malignancy. Recent data suggest 50% of uLMS may harbor alterations in the ATRX gene and such mutations may confer sensitivity to ataxia-telangiectasia-and-Rad3-related (ATR) kinase inhibitors. We sought to investigate the in vivo activity of Elimusertib (BAY1895344), a novel ATR-inhibitor, against ATRX-mutated uLMS patient-derived xenografts (PDXs). METHODS: Two fully characterized uLMS (i.e., LEY-11 and LEY-16) were grafted into female CB-17/SCID mice. Treatments with control vehicle or BAY1895344 (20 mg/kg dosed twice daily 3 days on 4 days off) were given via oral gavage and tumor measurements as well as weights obtained twice weekly. Tumor volume differences were calculated with a two-way ANOVA. Mechanistic studies were performed ex vivo using BAY1895344 treated uLMS tumor samples by western blot analysis. RESULTS: Both PDX LEY-11 and PDX LEY-16 harboring ATRX gene mutations demonstrated an aggressive behavior in vivo (i.e., control mice were euthanized on average at day 12.5 for PDX LEY-11 and at day 33 for PDX LEY-16). In both tumor models BAY1895344 20 mg/kg dosed with an intermittent oral schedule was able to induce significant growth inhibition compared to vehicle control treatment (p < 0.001 for both LEY-11 and LEY-16) and prolong median overall survival [PDX LEY-11 (12.5 vs. 42 days, p < 0.001) and PDX LEY-16 (33 vs. 60 days, p < 0.001)]. There were not significant changes in weight between treatment and controls. By western blot assays BAY1895344 exposure decreased phosphorylated-ATR and increased expression of apoptotic molecules in LMS PDXs. CONCLUSIONS: BAY1895344 demonstrates promising in vivo activity against biologically aggressive PDX models of uLMS harboring ATRX mutations, with no significant toxicity. Clinical trials of BAY1895344 in uLMS patients are warranted.
Asunto(s)
Leiomiosarcoma , Neoplasias Uterinas , Humanos , Femenino , Animales , Ratones , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Ratones SCID , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Mutación , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genéticaRESUMEN
OBJECTIVE: The Lifestyle Intervention for oVarian cancer Enhanced Survival (LIVES) is a national study of a combined diet and physical activity intervention for stage II-IV ovarian cancer survival, an under-represented cancer in lifestyle behavioral intervention research. Here, we present the data on recruitment, retention, and baseline demographic, clinical and lifestyle behavior characteristics of the LIVES study participants. METHODS: The LIVES study (NRG Oncology/GOG 0225) is a Phase III diet plus physical activity intervention trial testing the hypothesis that ovarian cancer survivors in the lifestyle intervention will demonstrate better progression-free survival than those in the control condition. Study interventions were delivered via centralized telephone-based health coaching. Baseline descriptive statistics were computed for demographic, clinical, and lifestyle behavior characteristics. RESULTS: The LIVES study exceeded its recruitment goals, enrolling 1205 ovarian cancer survivors from 195 NRG/NCORP-affiliated oncology practices across 49 states from 2012 to 2018. The mean age of enrollees was 59.6 years; the majority (69.4%) with stage III disease; 89% White, 5.5% Hispanic; 64% overweight/obese. Baseline self-reported diet showed a mean daily intake of 6.6 servings of fruit and vegetables, 62.7 fat grams, and 21.7 g of fiber. Physical activity averaged 13.0 MET-hours/week of moderate to vigorous physical activity; 50.9 h/week of sedentary time. Retention rates exceeded 88%. CONCLUSION: The LIVES study demonstrates efficiency in recruiting and retaining ovarian cancer survivors in a 24-month study of diet and physical activity intervention with a primary endpoint of progression free survival that will be reported. TRIAL REGISTRATION: ClinicalTrials.govNCT00719303.
Asunto(s)
Supervivientes de Cáncer , Neoplasias Ováricas , Humanos , Femenino , Persona de Mediana Edad , Dieta , Estilo de Vida , Ejercicio FísicoRESUMEN
BACKGROUND: Carcinosarcoma of the ovary (OCS) and uterus (UCS) are rare highly aggressive malignancies. Ataxia-telangiectasia-and-Rad3-related (ATR) kinase and homologous recombination play a pivotal role in DNA damage repair. Homologous recombination deficiency (HRD) has been demonstrated in >30% of OCS/UCS. We investigated the preclinical activity of elimusertib, a selective ATR kinase inhibitor, against carcinosarcoma (CS) cell lines and xenografts. METHODS: Sensitivity to elimusertib was evaluated in vitro against nine whole exome-sequenced (WES) primary CS cell lines and in vivo against HRD CS xenografts. Western blots were performed to determine baseline ATR and p-ATR protein expression in CS, and ATR pathway downstream effectors and apoptosis markers in CS HRD cell lines after Elimusertib treatment. RESULTS: Out of the 9 CS cell lines, 3 harbored HRD and 6 homologous recombination proficient (HRP) features. Most of CS (i.e., 7/9 = 85%) were found to be sensitive to Elimusertib in vitro. Among the 5 primary CS cell lines with a high-grade pure serous epithelial component, HRD cell lines were more sensitive to elimusertib than HRP tumors (mean IC50 ± SEM HRD CS = 61.3 nM ±15.2 vs HRP = 361.6 nM ±24.4 (p = 0.01)). Baseline ATR and p-ATR protein expression was higher in HRD CS cell lines. Elimusertib showed tumor growth inhibition in HRD CS xenografts (p < 0.0001) and increased overall animal survival (p < 0.0001). Western blot demonstrated dose-dependent inhibition of ATR, p-ATR and its downstream effector p-CHK1, and a dose-dependent increase in caspase-3 expression. CONCLUSIONS: Elimusertib is preclinically active in vitro and in vivo against primary CS cell lines and xenografts, respectively. CS models harboring HRD or with pure/mixed endometrioid histology demonstrated higher sensitivity to ATR inhibition. Clinical trials with elimusertib in CS patients are warranted.
Asunto(s)
Antineoplásicos , Ataxia Telangiectasia , Carcinosarcoma , Neoplasias Uterinas , Femenino , Animales , Humanos , Ataxia Telangiectasia/tratamiento farmacológico , Ovario , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/genética , Carcinosarcoma/tratamiento farmacológico , Carcinosarcoma/genéticaRESUMEN
INTRODUCTION: Uterine leiomyosarcomas (uLMS) are rare, highly aggressive tumors. Up to 30% of uLMS may harbor gain of function (GOF) in the MAP2K4 gene, important for tumor cell proliferation, differentiation and metastasis. We investigated the in vivo activity of a novel MAP2K4 inhibitor, PLX8725, against uLMS harboring MAP2K4 gene-amplification. METHODS: Two fully characterized uLMS (i.e., LEY-11 and LEY-16) were grafted into female CB-17/SCID mice. Treatments with control vehicle or PLX8725 (50 mg/kg) were given via oral gavage daily on weekdays for up to 60 days. Tumor volume differences were calculated with two-way ANOVA. Pharmacokinetic (PK) and mechanistic studies of PLX8725 in uLMS PDX models were also performed. RESULTS: Both uLMS tumors evaluated demonstrated GOF in MAP2K4 (i.e., 3 CNV in both LEY-11 and LEY-16). Tumor growth inhibition was significantly greater in both PDX LEY-11 and PDX LEY-16 treated with PLX8725 when compared to controls (p < 0.001). Median overall survival was also significantly longer in both PDX LEY-11 (p = 0.0047) and PDX LEY-16 (p = 0.0058) treatment cohorts when compared to controls. PLX8725 oral treatment was well tolerated, and PK studies demonstrated that oral PLX8725 gives extended exposure in mice. Ex vivo tumor samples after PLX8725 exposure decreased phosphorylated-ATR, JNK and p38, and increased expression of apoptotic molecules on western blot. CONCLUSION: PLX8725 demonstrates promising in vivo activity against PDX models of uLMS harboring GOF alterations in the MAP2K4 gene with tolerable toxicity. Phase I trials of PLX8725 in advanced, recurrent, chemotherapy-resistant uLMS patients are warranted.
Asunto(s)
Leiomiosarcoma , Neoplasias Pélvicas , Neoplasias Uterinas , Humanos , Femenino , Animales , Ratones , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Amplificación de Genes , Ratones SCID , Recurrencia Local de Neoplasia/genética , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , MAP Quinasa Quinasa 4/genéticaRESUMEN
BACKGROUND: Microsatellite instability-high (MSI-H)/mismatch repair deficiency (dMMR) is a biomarker for responses to immune checkpoint inhibitors (ICIs). Whether mechanisms underlying microsatellite instability alter responses to ICIs is unclear. This article reports data from a prospective phase 2 pilot study of pembrolizumab in patients with recurrent MSI-H endometrial cancer (EC) analyzed by whole exome sequencing (WES) and potential mechanisms of primary/secondary ICI resistance (NCT02899793). METHODS: Patients with measurable MSI-H/dMMR EC confirmed by polymerase chain reaction/immunohistochemistry were evaluated by WES and received 200 mg of pembrolizumab every 3 weeks for ≤2 years. The primary end point was the objective response rate (ORR). Secondary end points included progression-free survival (PFS) and overall survival (OS). RESULTS: Twenty-five patients (24 evaluable) were treated. Six patients (25%) harbored Lynch/Lynch-like tumors, whereas 18 (75%) had sporadic EC. The tumor mutation burden was higher in Lynch-like tumors (median, 2939 mutations/megabase [Mut/Mb]; interquartile range [IQR], 867-5108 Mut/Mb) than sporadic tumors (median, 604 Mut/Mb; IQR, 411-798 Mut/Mb; P = .0076). The ORR was 100% in Lynch/Lynch-like patients but only 44% in sporadic patients (P = .024). The 3-year PFS and OS proportions were 100% versus 30% (P = .017) and 100% versus 43% (P = .043), respectively. CONCLUSIONS: This study suggests prognostic significance of Lynch-like cancers versus sporadic MSI-H/dMMR ECs for ORR, PFS, and OS when patients are treated with pembrolizumab. Larger confirmatory studies in ECs and other MSI-H/dMMR tumors are necessary. Defective antigen processing/presentation and deranged induction in interferon responses serve as mechanisms of resistance in sporadic MSI-H ECs. Oligoprogression in MSI-H/dMMR patients appears salvageable with surgical resection and/or local treatment and the continuation of pembrolizumab off study. Clinical studies evaluating separate MSI-H/dMMR EC subtypes treated with ICIs are warranted.
Asunto(s)
Neoplasias Endometriales , Inestabilidad de Microsatélites , Anticuerpos Monoclonales Humanizados , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Proyectos Piloto , Estudios ProspectivosRESUMEN
BACKGROUND: This multi-center RP2 study assessed activity/safety of ixabepilone + bevacizumab compared to ixabepilone in platinum-resistant/refractory ovarian/fallopian tube/primary peritoneal cancer. Additional objectives were to examine the role of prior bevacizumab and taxanes, and explore class III-ß-tubulin (TUBB3) as a predictive biomarker. METHODS: Participants were randomised to receive ixabepilone 20 mg/m2 days 1, 8, 15 with (IXA + BEV) or without (IXA) bevacizumab 10 mg/kg days 1, 15 every 28 days. Patients were stratified by prior BEV. The primary endpoint was PFS. OS, safety, and ORR served as secondary endpoints. RESULTS: Among 76 evaluable patients who received IXA + BEV (n = 39) compared to IXA (n = 37), the ORR was 33% (n = 13) versus 8% (n = 3)(P = 0.004), durable at 6 months in 37% (n = 14) and 3% (n = 1) (P < 0.001). BEV significantly improved PFS (median:5.5 vs 2.2 months, HR = 0.33, 95%CI 0.19-0.55, P < 0.001) and OS (median:10.0 vs 6.0 months, HR = 0.52, 95%CI 0.31-0.87, P = 0.006). Both regimens were well-tolerated. TUBB3 expression did not predict response. Subgroup analyses revealed minimal effect of prior BEV or taxane resistant/refractory status on response to IXA + BEV. CONCLUSIONS: IXA + BEV is a well-tolerated, effective combination for platinum/taxane-resistant ovarian cancer that extends PFS and likely OS relative to IXA monotherapy. Prior receipt of BEV should not preclude the use of IXA + BEV. TUBB3 is not a predictive biomarker. CLINICAL TRIAL REGISTRATION: NCT3093155.
Asunto(s)
Neoplasias de las Trompas Uterinas , Neoplasias Ováricas , Neoplasias Peritoneales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/efectos adversos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Epotilonas , Neoplasias de las Trompas Uterinas/tratamiento farmacológico , Trompas Uterinas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Platino (Metal)/uso terapéuticoRESUMEN
INTRODUCTION: Uterine serous carcinoma (USC) is an aggressive variant of endometrial cancer with a poor prognosis. Approximately 30% of USC overexpress HER2/neu, a recognized target for trastuzumab in advanced/recurrent HER2/neu-positive USC. We evaluated the efficacy of the pan-c-erb inhibitor neratinib and the poly (ADP-ribose)-polymerase (PARP) inhibitor olaparib as single agents and in combination against USC cell lines and xenografts. METHODS: In-vitro cell-viability assays with olaparib, neratinib, and olaparib/neratinib were assessed using flow-cytometry based assays against a panel of USC cell lines with high and low HER2/neu expression. Homologous recombination deficiency (HRD) signatures were evaluated as described by Alexandrov et al. (Nature;2020;578:94-101) while downstream signaling affected by neratinib/olaparib exposure was assessed with immunoblotting. Efficacy of single- versus dual-agent inhibition was evaluated in-vivo using two USC-xenografts with 3+ HER2/neu expression. RESULTS: Neratinib was more potent than olaparib in suppression of in-vitro growth of HER2/neu 3+ cell lines (ARK1: p = 0.0047; ARK2: p = 0.0428) while no difference was noted against HER2/neu 1+ tumors (ARK4). Importantly, the combination of olaparib with neratinib synergistically improved tumor suppression compared to either single-agent in vitro. USC cells exposed to olaparib upregulated HER2/neu expression, while neratinib treatment increased PARP activity (ARK1: p < 0.0001; ARK2: p < 0.0001). Single-agent neratinib transiently inhibited in vivo growth of USC xenografts harboring HER2/neu gene amplification (ARK1: p < 0.05; ARK2: p < 0.05). In contrast, the combination of the two inhibitors caused a stronger and durable growth inhibition in both USC xenografts (ARK1: p < 0.05; ARK2: p < 0.05). CONCLUSION: The combination of olaparib and neratinib is active and synergistic against primary HER2/neu + USC. This combination may represent a novel therapeutic option for USC patients with HER2/neu+, homologous recombination-proficient tumors resistant to chemotherapy.
Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Uterinas , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Quinolinas , Receptor ErbB-2/metabolismo , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
OBJECTIVES: Carcinosarcoma (CS) of the ovary and uterus are highly aggressive malignancies associated with poor survival. Poly(ADP-ribose)-polymerase inhibitors (PARPi) are targeted agents impairing DNA repair via homologous-recombination-deficiency (HRD) mechanisms. We used whole-exome-sequencing (WES) data from a cohort of fresh tumor samples of ovarian (OCS) and uterine carcinosarcoma (UCS), primary cell lines and xenografts to investigate the role for olaparib in CSs. METHODS: WES data from 73 CS samples (48 UCS and 25 OCS) were analyzed for HRD signatures. Olaparib activity was evaluated using cell-viability, cell-cycle, apoptosis and cytotoxicity assays against primary CS cell lines. Olaparib antitumor activity was tested in vivo against HRD CS xenografts. RESULTS: Signature-3 (i.e. HRD-related signature) was identified in 60% of OCS (15 of 25) vs 25% of UCS (12 of 48) (p = 0.005). CS cell lines harboring Signature-3/HRD (3 OCS/1 UCS) were significantly more sensitive to olaparib when compared to HRP cell lines (5 UCS/1 OCS) [mean IC50 ± SEM = 2.94 µM ± 0.07 vs mean ± SEM = 23.3 µM ± 0.09, (p = 0.02), respectively]. PARPi suppressed CS cell growth through cell cycle arrest in the G2/M phase and caused more apoptosis in HRD vs HRP primary tumors (p < 0.0001). In vivo, olaparib significantly impaired HRD CS xenografts tumor growth (p = 0.0008) and increased overall animal survival (p < 0.0001). CONCLUSIONS: OCS and UCS cell lines harboring HRD signature-3 were significantly more sensitive to olaparib in vitro and in vivo when compared to HRP CS. Clinical studies with PARPi in CS patients with a dominant signature 3 (HRD-related) are warranted.
Asunto(s)
Carcinosarcoma , Neoplasias Ováricas , Adenosina Difosfato/uso terapéutico , Animales , Carcinosarcoma/tratamiento farmacológico , Carcinosarcoma/genética , Línea Celular Tumoral , Femenino , Recombinación Homóloga , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ovario/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas , Ribosa/uso terapéuticoRESUMEN
Ovarian cancer remains the most lethal gynecologic malignancy. We analyzed the mutational landscape of 64 primary, 41 metastatic, and 17 recurrent fresh-frozen tumors from 77 patients along with matched normal DNA, by whole-exome sequencing (WES). We also sequenced 13 pairs of synchronous bilateral ovarian cancer (SBOC) to evaluate the evolutionary history. Lastly, to search for therapeutic targets, we evaluated the activity of the Bromodomain and Extra-Terminal motif (BET) inhibitor GS-626510 on primary tumors and xenografts harboring c-MYC amplifications. In line with previous studies, the large majority of germline and somatic mutations were found in BRCA1/2 (21%) and TP53 (86%) genes, respectively. Among mutations in known cancer driver genes, 77% were transmitted from primary tumors to metastatic tumors, and 80% from primary to recurrent tumors, indicating that driver mutations are commonly retained during ovarian cancer evolution. Importantly, the number, mutation spectra, and signatures in matched primary-metastatic tumors were extremely similar, suggesting transcoelomic metastases as an early dissemination process using preexisting metastatic ability rather than an evolution model. Similarly, comparison of SBOC showed extensive sharing of somatic mutations, unequivocally indicating a common ancestry in all cases. Among the 17 patients with matched tumors, four patients gained PIK3CA amplifications and two patients gained c-MYC amplifications in the recurrent tumors, with no loss of amplification or gain of deletions. Primary cell lines and xenografts derived from chemotherapy-resistant tumors demonstrated sensitivity to JQ1 and GS-626510 (P = 0.01), suggesting that oral BET inhibitors represent a class of personalized therapeutics in patients harboring recurrent/chemotherapy-resistant disease.