Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 277(3): 1780-7, 2002 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-11704674

RESUMEN

The behavior of purified potato mitochondria toward the main effectors of the animal mitochondrial permeability transition has been studied by light scattering, fluorescence, SDS-polyacrylamide gel electrophoresis, and immunoblotting techniques. The addition of Ca(2+) induces a phosphate-dependent swelling that is fully inhibited by cyclosporin A if dithioerythritol is present. Mg(2+) cannot be substituted for Ca(2+) but competes with it. Disruption of the outer membrane and release of several proteins, including cytochrome c, occur upon completion of swelling. Ca(2+)-induced swelling is delayed and its rate is decreased when pH is shifted from 7.4 to 6.6. It is accelerated by diamide, phenylarsine oxide, and linolenic acid. In the absence of Ca(2+), however, linolenic acid (< or =20 microm) rapidly dissipates the succinate-driven membrane potential while having no effect on mitochondrial volume. Anoxic conditions favor in vitro swelling and the concomitant release of cytochrome c and of other proteins in a pH-dependent way. These data indicate that the classical mitochondrial permeability transition occurs also in plants. This may have important implications for our understanding of cell stress and death processes.


Asunto(s)
Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Solanum tuberosum/metabolismo , Western Blotting , Calcio/metabolismo , Permeabilidad de la Membrana Celular , Electroforesis en Gel de Poliacrilamida , Membranas Intracelulares/fisiología , Potenciales de la Membrana , Mitocondrias/fisiología , Dilatación Mitocondrial , Espectrometría de Fluorescencia
2.
Ann Bot ; 90(4): 499-507, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12324274

RESUMEN

This article reviews the relationship between the energy status of plant cells under O(2) stress (e.g. waterlogging) and the maintenance of membrane intactness, using information largely derived from suspension cultures of anoxia-intolerant potato cells. Energy-related parameters measured were fermentation end-products (ethanol, lactate, alanine), respiratory rate, ATP, adenylate energy charge, nitrate reductase activity and biomass. ATP synthesis rates were calculated from the first four parameters. Reactive oxygen species were estimated from H(2)O(2) and superoxide levels, and the enzymatic detoxification potential from the activity levels of catalase and superoxide dismutase. Structure-related parameters were total fatty acids, free fatty acids (FFAs), lipid hydroperoxides, total phospholipids, N-acylphosphatidylethanolamine (NAPE) and cell viability. The following issues are addressed in this review: (1) what is the impact of anoxia on membrane lipids and how does this relate to energy status; (2) does O(2) per se play a role in these changes; (3) under which conditions and to what extent does lipid peroxidation occur upon re-aeration; and (4) can the effects of re-aeration be distinguished from those of anoxia? The emerging picture is a reappraisal of the relative contributions of anoxia and re-aeration. Two successive phases (pre-lytic and lytic) characterize potato cells under anoxia. They are connected by a threshold in ATP production rate, below which membrane lipids are hydrolysed to FFAs, and NAPE increases. Since lipid peroxidation occurs only when cells are reoxygenated during the lytic phase, its biological relevance in an already damaged system is questionable.


Asunto(s)
Membrana Celular/fisiología , Metabolismo Energético/fisiología , Estrés Oxidativo/fisiología , Oxígeno/farmacología , Plantas/metabolismo , Adenosina Trifosfato/metabolismo , Anaerobiosis , Catalasa/metabolismo , Membrana Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos no Esterificados/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Lipooxigenasa/metabolismo , Nitrato-Reductasa , Nitrato Reductasas/metabolismo , Nitratos/farmacología , Oxígeno/metabolismo , Fosfolípidos/metabolismo , Células Vegetales , Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Solanum tuberosum/citología , Solanum tuberosum/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
3.
Ann Bot ; 89(5): 551-8, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12099528

RESUMEN

Some of the parameters that determine flooding resistance-and consequently habitat zonation-were investigated in four neotropical trees (Schizolobium parahyba, Sebastiania commersoniana, Erythrina speciosa and Sesbania virgata). The constitutive parameters of seeds (size, nature and amount of reserves) only partly influenced resistance to flooding, mainly through a high carbohydrate : size ratio. Parameters describing metabolic efficiency under stress conditions were more important. Among them, fermentation capacity and levels of ATP and of total adenylates played a key role. The highest resistance to anoxia was associated with increased availability of free sugars, elevated alcohol dehydrogenase activity and corresponding mRNA levels, more efficient removal of ethanol and lactate, and higher adenylate levels. Finally, as a lethal consequence of energy shortage, free fatty acids were released on a massive scale in the flooding-sensitive species Schizolobium parahyba, whereas lipid hydrolysis did not occur in the most resistant species Sesbania virgata.


Asunto(s)
Oxígeno/metabolismo , Semillas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Alcohol Deshidrogenasa/biosíntesis , Anaerobiosis , Metabolismo de los Hidratos de Carbono , Metabolismo Energético/fisiología , Etanol/metabolismo , Euphorbiaceae/crecimiento & desarrollo , Euphorbiaceae/metabolismo , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Ácidos Grasos/metabolismo , Fermentación/fisiología , Germinación/fisiología , Ácido Láctico/metabolismo , ARN Mensajero/metabolismo , Semillas/metabolismo , Factores de Tiempo , Árboles/metabolismo , Clima Tropical
4.
Plant J ; 30(3): 329-36, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12000680

RESUMEN

Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of 14C-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.


Asunto(s)
Enzimas/metabolismo , Etanol/metabolismo , Ácidos Grasos/biosíntesis , Nicotiana/metabolismo , Oxígeno/metabolismo , Polen/metabolismo , Acetaldehído/metabolismo , Acetato CoA Ligasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Fermentación , Glioxilatos/metabolismo , Lípidos/biosíntesis , Malato Sintasa/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Polen/crecimiento & desarrollo , Piruvato Descarboxilasa/metabolismo , Sacarosa/metabolismo , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda