Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475382

RESUMEN

Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric polyvinylidene difluoride (PVDF) polymer-based membranes and their nanocomposites for textile wastewater remediation. At the beginning of this article, the classification of piezoelectric materials is discussed. Among the various membrane-forming polymers, PVDF is a piezoelectric polymer discussed in detail due to its exceptional piezoelectric properties. Polyvinylidene difluoride can show excellent piezoelectric properties in the beta phase. Therefore, various methods of ß-phase enhancement within the PVDF polymer and various factors that have a critical impact on its piezo-catalytic activity are briefly explained. This review article also highlights the major aspects of piezoelectric membranes in the context of dye degradation and a net-zero approach. The ß-phase of the PVDF piezoelectric material generates an electron-hole pair through external vibrations. The possibility of piezo-catalytic dye degradation via mechanical vibrations and the subsequent capture of the resulting CO2 and H2 gases open up the possibility of achieving the net-zero goal.

2.
RSC Adv ; 12(19): 11750-11768, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481102

RESUMEN

Water bodies have become polluted with heavy metals and hazardous contaminants as a result of fast development. Many strategies have been devised by researchers in order to remove hazardous contaminants from the aquatic environment. Utilizing graphene oxide-based composite materials as efficient adsorbents for waste water treatment, desalination, separation, and purification is gaining attraction nowadays. Some of their defining properties are high mechanical strength, hydrophilicity, remarkable flexibility, ease of synthesis, atomic thickness, and compatibility with other materials. In water treatment, high separation performance and stable graphene-based laminar structures have been the main goals. Magnetic separation is among the methods which received a lot of attention from researchers since it has been shown to be quite effective at removing harmful pollutants from aqueous solution. Graphene oxide-modified nanocomposites have provided optimal performance in water purification. This review article focusses on the fabrication of GO, rGO and MGO nanocomposites as well as the primary characterization tools needed to assess the physiochemical and structural properties of graphene-based nanocomposites. It also discusses the approaches for exploiting graphene oxide (GO), reduced graphene (rGO), and magnetic graphene oxide (MGO) to eliminate contaminants for long-term purification of water. The potential research hurdles for using fabricated MGOs as an adsorbent to remediate water contaminants like hazardous metals, radioactive metal ions, pigments, dyes, and agricultural pollutants are also highlighted.

3.
Turk J Chem ; 45(1): 82-91, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679155

RESUMEN

Spectrophotometric monitoring of 4-nitrophenol (4-NP) reduction by sodium borohydride (NaBH4) using gold nanoparticles (GNPs) as a catalyst has been extensively studied, but the stability of GNPs in terms of change in the surface plasmon resonance (SPR) at different temperatures has not been explored. In the present investigation, our aim was to evaluate the SPR stability of GNPs as a catalyst during the reduction of 4-NP at different elevated temperatures (i.e. 30-60 °C) and sodium borohydride concentrations. Sensitivity of this degradation process toward concentration of GNPs at a range of temperatures is also evaluated. The spectrophotometric results reveal that up to 45 °C, 12 ± 1.5 nm catalyst has a consistent optical density (OD) during the entire 4-NP reduction process, which is related to the surface integrity of catalyst atoms. As the temperature approached 50 °C, the OD gradually decreased and showed a blue shift as the reaction proceeded, which could be related to a decrease in particle size or surface dissolution of gold atoms. The present study may find application in the design of catalysts for the reduction of organic pollutants in industrial wastewater at a range of temperatures.

4.
J Hazard Mater ; 403: 123587, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32791478

RESUMEN

Water pollution from the fashion industries containing dyes has become a major source of water pollution. These anthropogenic contaminated waters directly enter irrigation and drinking water systems, causing irreversible environmental damage to human health. Nanomembrane technology has attracted extensive attention to remove these toxic chemicals but new approaches are still required for improving removal efficiency and control the channel size. The work deals with the fabrication of a novel hybrid polyvinylidene fluoride (PVDF)-polyaniline (PANI) membrane with graphene oxide (GO). Incorporation of PANI-GO as a nanofiller has significantly improved antifouling properties and a solvent content of the fabricated membrane. Besides, pure water flux also increases from 112 to 454 L m-2 h-1 indicating the hydrophilic nature of the nanocomposite membrane. Among various compositions, the nanocomposites membrane with 0.1 %w/v GO demonstrated a maximum of 98 % dye rejection at 0.1 MPa operating pressure. After multiple testing of the membrane, the flux recovery ratio reached about 94 % and dyes rejection improved with the addition of PANI-GO. The removal efficiency of the composite membrane for Allura red is 98 % and for methyl orange is 95 %. Based on the above results the PVDF/PANI/GO membranes are recommended for practical use in wastewater treatment, particularly for anionic dyes removal from textile effluents.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 70(5): 1034-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18078780

RESUMEN

In the present study CT complexes of 2-, 3- and 4-Picolines with (DDQ) 2, 3-dichloro-5, 6-dicyano parabenzoquinone (pi-acceptor) and (I2) Iodine (sigma-acceptor) have been investigated spectrophotometrically in three different solvents (CCl4, CHCl3 and CH2Cl2) at six different temperatures. The formation constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters were calculated by Van(')t Hoff equation. The DeltaH degrees , DeltaG degrees and DeltaS degrees values are all negative implying that the formation of studied complexes is exothermic in nature.


Asunto(s)
Picolinas/química , Iones/química , Solventes/química , Espectrofotometría , Termodinámica
6.
J Photochem Photobiol B ; 180: 268-275, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29477892

RESUMEN

Reactive oxygen (hydroxyl OH, hydroperoxyl OOH) species are highly unstable to be studied experimentally under normal conditions. The present study reports the antioxidant potential of the vitamins namely ascorbic acid, riboflavin and nicotinic acid against these reactive oxygen species (ROS) using the predictive power of Density Functional Theory (DFT) (B3LYP with 6311G basis set) calculations. The order of reactivity of aforementioned vitamins was assessed by determining the bond dissociation enthalpy (BDE) of the OH bond, which is the controlling factor, if hydrogen atom transfer (HAT) mechanism is considered. Transition state calculations were also carried out to determine the reaction barrier for the radical scavenging reaction of vitamins by calculating the forward and the backward activation energies using the same level of theory as mentioned above. The theoretical methodology was first validated by taking a model stable free radical, 2, 2-diphenyl-1, picrylhydrazyl radical (DPPH) and applying the proposed approach followed by the experimental studies using UV-visible spectroscopy and cyclic voltammetry. The close agreement between the theoretical prediction and experimental observations proved the authenticity of theoretical approach.


Asunto(s)
Antioxidantes/química , Modelos Moleculares , Especies Reactivas de Oxígeno/química , Ácido Ascórbico/química , Técnicas Electroquímicas , Radical Hidroxilo/química , Niacina/química , Oxidación-Reducción , Teoría Cuántica , Riboflavina/química , Espectrofotometría , Termodinámica
7.
Heliyon ; 4(11): e00847, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30450432

RESUMEN

Ionogels have emerged as one of the most interesting and captivating form of composites which credits to the outstanding characteristics. One of the most important constituent of ionogels is ionic liquid, which show many attractive properties notably non-volatility, in-flammability, negligible vapor pressure, tunability, thermal stability and solvating ability. A large variety of matrix materials have been under consideration for ionogels, presently, polymer/ionic liquid based ionogels have attracted much attention. Numerous polymeric materials such as have been utilized for these polymer/ionic liquids based ionogels. Polyvinylidene fluoride (PVDF) has been on top of the line as a matrix material for polymer based ionogels owing to its stability, aging and chemical resistance and mechanical strength. This review is primarily concerned with the properties of polyvinylidene fluoride based ionogels with an emphasis on their applications in various domains electrochemical devices, gas separation and liquid/liquid separations.

8.
J Photochem Photobiol B ; 161: 266-72, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27288656

RESUMEN

The present study investigates the interaction of citrate stabilized gold nanoparticles (12±1.5nm) (GNPs) with free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable and electrochemically generated superoxide, O2(-). Different experiments were designed to understand the interaction between GNPs and DPPH by employing cyclic voltammetry, UV-vis spectroscopy and computational chemistry using 6-311G basis set. The increase in heterogeneous rate constant, ksh, of DPPH upon addition of GNPs pointed towards possible complex formation, DPPH-GNPs which were further explained by a model assuming surface adsorption of DPPH on GNPs. Further, the model was validated by studying interaction of GNPs with a biologically important free radical, O2(-). Exciting result in terms of disappearance of anodic peak after GNPs addition confirmed that gold nanoparticles interacted with stable as well as unstable free radicals. Also, the stoichiometry of the most stable complex GNP-DPPH was determined from UV-vis spectroscopy by applying Job's method. The GNP-DPPH complex was found to be active with 46.0% reduction of the IC50 value of standard antioxidant, ascorbic acid (AA), indicating its role in enhancing antioxidant activity. Hence, this study presents a simple and potential approach to enhance the efficiency of natural antioxidants without modifying their structure, or involving the complex functionalization of GNPs with antioxidants.


Asunto(s)
Ácido Ascórbico/química , Radicales Libres/química , Oro/química , Nanopartículas del Metal/química , Antioxidantes/química , Técnicas Electroquímicas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda