Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Annu Rev Biochem ; 82: 387-414, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23495935

RESUMEN

The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Ciclo Celular/fisiología , Ligasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Humanos
2.
FASEB J ; 33(10): 11420-11430, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31337255

RESUMEN

Eukaryotic cells have developed sophisticated mechanisms to ensure the integrity of the genome and prevent the transmission of altered genetic information to daughter cells. If this control system fails, accumulation of mutations would increase risk of diseases such as cancer. Ubiquitylation, an essential process for protein degradation and signal transduction, is critical for ensuring genome integrity as well as almost all cellular functions. Here, we investigated the role of the SKP1-Cullin-1-F-box protein (SCF)-[F-box and tryptophan-aspartic acid (WD) repeat domain containing 7 (FBXW7)] ubiquitin ligase in cell proliferation by searching for targets implicated in this process. We identified a hitherto-unknown FBXW7-interacting protein, p53, which is phosphorylated by glycogen synthase kinase 3 at serine 33 and then ubiquitylated by SCF(FBXW7) and degraded. This ubiquitylation is carried out in normally growing cells but primarily after DNA damage. Specifically, we found that SCF(FBXW7)-specific targeting of p53 is crucial for the recovery of cell proliferation after UV-induced DNA damage. Furthermore, we observed that amplification of FBXW7 in wild-type p53 tumors reduced the survival of patients with breast cancer. These results provide a rationale for using SCF(FBXW7) inhibitors in the treatment of this subset of tumors.-Galindo-Moreno, M., Giráldez, S., Limón-Mortés, M. C., Belmonte-Fernández, A., Reed, S. I., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage.


Asunto(s)
Daño del ADN/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína p53 Supresora de Tumor/genética , Animales , Células COS , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Chlorocebus aethiops , Proteínas F-Box/genética , Células HCT116 , Células HEK293 , Humanos , Mutación/genética , Fosforilación/genética , Dominios Proteicos/genética , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
3.
Mol Cell ; 45(5): 669-79, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22306294

RESUMEN

During embryonic cell cycles, B-cyclin-CDKs function as the core component of an autonomous oscillator. Current models for the cell-cycle oscillator in nonembryonic cells are slightly more complex, incorporating multiple G1, S phase, and mitotic cyclin-CDK complexes. However, periodic events persist in yeast cells lacking all S phase and mitotic B-cyclin genes, challenging the assertion that cyclin-CDK complexes are essential for oscillations. These and other results led to the proposal that a network of sequentially activated transcription factors functions as an underlying cell-cycle oscillator. Here we examine the individual contributions of a transcription factor network and cyclin-CDKs to the maintenance of cell-cycle oscillations. Our findings suggest that while cyclin-CDKs are not required for oscillations, they do contribute to oscillation robustness. A model emerges in which cyclin expression (thereby, CDK activity) is entrained to an autonomous transcriptional oscillator. CDKs then modulate oscillator function and serve as effectors of the oscillator.


Asunto(s)
Ciclo Celular/genética , Quinasas Ciclina-Dependientes/fisiología , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/fisiología , Levaduras/citología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/fisiología , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/enzimología , Levaduras/genética
4.
J Biol Chem ; 292(25): 10398-10413, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28461335

RESUMEN

Homologous to E6AP C-terminal (HECT) ubiquitin (Ub) ligases (E3s) are a large class of enzymes that bind to their substrates and catalyze ubiquitination through the formation of a Ub thioester intermediate. The mechanisms by which these E3s assemble polyubiquitin chains on their substrates remain poorly defined. We report here that the Nedd4 family HECT E3, WWP1, assembles substrate-linked Ub chains containing Lys-63, Lys-48, and Lys-11 linkages (Lys-63 > Lys-48 > Lys-11). Our results demonstrate that WWP1 catalyzes the formation of Ub chains through a sequential addition mechanism, in which Ub monomers are transferred in a successive fashion to the substrate, and that ubiquitination by WWP1 requires the presence of a low-affinity, noncovalent Ub-binding site within the HECT domain. Unexpectedly, we find that the formation of Ub chains by WWP1 occurs in two distinct phases. In the first phase, chains are synthesized in a unidirectional manner and are linked exclusively through Lys-63 of Ub. In the second phase, chains are elongated in a multidirectional fashion characterized by the formation of mixed Ub linkages and branched structures. Our results provide new insight into the mechanism of Ub chain formation employed by Nedd4 family HECT E3s and suggest a framework for understanding how this family of E3s generates Ub signals that function in proteasome-independent and proteasome-dependent pathways.


Asunto(s)
Poliubiquitina/biosíntesis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Humanos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Proteolisis , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
5.
Mol Cell ; 35(2): 206-16, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647517

RESUMEN

Cyclin E has been shown to have a role in pre-replication complex (Pre-RC) assembly in cells re-entering the cell cycle from quiescence. The assembly of the pre-RC, which involves the loading of six MCM subunits (Mcm2-7), is a prerequisite for DNA replication. We found that cyclin E, through activation of Cdk2, promotes Mcm2 loading onto chromatin. This function is mediated in part by promoting the accumulation of Cdc7 messenger RNA and protein, which then phosphorylates Mcm2. Consistent with this, a phosphomimetic mutant of Mcm2 can bypass the requirement for Cdc7 in terms of Mcm2 loading. Furthermore, ectopic expression of both Cdc6 and Cdc7 can rescue the MCM loading defect associated with expression of dominant-negative Cdk2. These results are consistent with a role for cyclin E-Cdk2 in promoting the accumulation of Cdc6 and Cdc7, which is required for Mcm2 loading when cells re-enter the cell cycle from quiescence.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Replicación del ADN , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Ciclina E/metabolismo , Ciclina E/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/fisiología , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Alineación de Secuencia , Serina/metabolismo , Transcripción Genética
6.
Adv Exp Med Biol ; 1042: 527-547, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29357072

RESUMEN

Precise replication of genetic material and its equal distribution to daughter cells are essential to maintain genome stability. In eukaryotes, chromosome replication and segregation are temporally uncoupled, occurring in distinct intervals of the cell cycle, S and M phases, respectively. Cyclin E accumulates at the G1/S transition, where it promotes S phase entry and progression by binding to and activating CDK2. Several lines of evidence from different models indicate that cyclin E/CDK2 deregulation causes replication stress in S phase and chromosome segregation errors in M phase, leading to genomic instability and cancer. In this chapter, we will discuss the main findings that link cyclin E/CDK2 deregulation to genomic instability and the molecular mechanisms by which cyclin E/CDK2 induces replication stress and chromosome aberrations during carcinogenesis.


Asunto(s)
Ciclina E/genética , Ciclina E/fisiología , Inestabilidad Genómica/genética , Animales , Ciclo Celular/genética , Replicación del ADN/genética , Regulación de la Expresión Génica , Humanos , Origen de Réplica/genética
7.
Cancer Cell ; 13(2): 88-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18242509

RESUMEN

The F box protein Skp2 is frequently overexpressed in human tumors and is capable of transforming cultured cells in vitro. It has been assumed, quite reasonably, that this oncogenic property of Skp2 is directly related to its role, as part of an SCF ubiquitin ligase complex, in the ubiquitin-mediated proteolysis of negative cell cycle regulatory proteins, notably p27Kip1. However, building on earlier results indicating that silencing of Skp2 promotes apoptosis in some tumor-derived cell lines, Kitagawa and coworkers in the February 1 issue of Molecular Cell have elucidated an alternative mechanism for promotion of tumorigenesis by Skp2, specifically the suppression of p53-mediated apoptosis.


Asunto(s)
Neoplasias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Apoptosis , Humanos , Neoplasias/patología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Quinasas Asociadas a Fase-S/química , Proteína p53 Supresora de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(8): 2754-9, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21697511

RESUMEN

Cyclin-dependent kinase subunit (Cks) proteins are small cyclin-dependent kinase-interacting proteins that are frequently overexpressed in breast cancer, as well as in a broad spectrum of other human malignancies. However, the mechanistic link between Cks protein overexpression and oncogenesis is still unknown. In this work, we show that overexpression of Cks1 or Cks2 in human mammary epithelial and breast cancer-derived cells, as well as in other cell types, leads to override of the intra-S-phase checkpoint that blocks DNA replication in response to replication stress. Specifically, binding of Cks1 or Cks2 to cyclin-dependent kinase 2 confers partial resistance to the effects of inhibitory tyrosine phosphorylation mediated by the intra-S-phase checkpoint, allowing cells to continue replicating DNA even under conditions of replicative stress. Because many activated oncoproteins trigger a DNA damage checkpoint response, which serves as a barrier to proliferation and clonal expansion, Cks protein overexpression likely constitutes one mechanism whereby premalignant cells can circumvent this DNA damage response barrier, conferring a proliferative advantage under stress conditions, and therefore contributing to tumor development.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Daño del ADN , Proteínas Oncogénicas/metabolismo , Proteínas Quinasas/metabolismo , Animales , Quinasas CDC2-CDC28 , Línea Celular Tumoral , Células HEK293 , Humanos , Hidroxiurea/farmacología , Ratones , Fase S/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Timidina/farmacología
9.
Eukaryot Cell ; 12(9): 1192-201, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23825181

RESUMEN

Cks1 was originally identified based on genetic interactions with CDC28, the gene that encodes Cdk1 in the budding yeast Saccharomyces cerevisiae. Subsequent work has shown that Cks1 binds Cdc28 and modulates its activity against certain substrates. However, the Cks1/Cdc28 complex also has a role in transcriptional chromatin remodeling not related to kinase activity. In order to elucidate protein networks associated with Cks1 transcriptional functions, proteomic analysis was performed on immunoaffinity-purified Cks1, identifying a physical interaction with the Paf1 complex. Specifically, we found that the Paf1 complex component Rtf1 interacts directly with Cks1 and that this interaction is essential for efficient recruitment of Cks1 to chromatin in the context of GAL1 gene induction. We further found that Cks1 in this capacity serves as an adaptor allowing Rtf1 to recruit 19S proteasome particles, shown to be required for efficient RNA production from some rapidly inducible genes such as GAL1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Galactoquinasa/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Sitios Genéticos , Proteínas Nucleares/genética , Unión Proteica , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Activación Transcripcional
10.
J Cell Biol ; 178(3): 371-85, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17664332

RESUMEN

Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APC(Cdh1)) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APC(Cdh1) substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E-mediated mitotic phenotype.


Asunto(s)
Ciclo Celular/fisiología , Ciclina E/metabolismo , Mitosis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Línea Celular , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Microscopía Fluorescente/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Securina , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Nat Cell Biol ; 4(8): E199-201, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12149634

RESUMEN

If there was any pervasive theme at the Cold Spring Harbor Cell Cycle Meeting (May 15 19, 2002), it was negativity. This is clearly the age of the negative cell cycle regulator, as a large percentage of the talks focused on the critical roles of cell cycle inhibitory networks.


Asunto(s)
Ciclo Celular/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
Nat Cell Biol ; 5(10): 928-35, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14502293

RESUMEN

Cells divide with remarkable fidelity, allowing complex organisms to develop and possess longevity. Checkpoint controls contribute by ensuring that genome duplication and segregation occur without error so that genomic instability, associated with developmental abnormalities and a hallmark of most human cancers, is avoided. S-phase checkpoints prevent cell division while DNA is replicating. Budding yeast Mec1p and Rad53p, homologues of human checkpoint kinases ATM/ATR and Chk2, are needed for this control system. How Mec1p and Rad53p prevent mitosis in S phase is not known. Here we provide evidence that budding yeasts avoid mitosis during S phase by regulating the anaphase-promoting complex (APC) specificity factor Cdc20p: Mec1p and Rad53p repress the accumulation of Cdc20p in S phase. Because precocious Cdc20p accumulation causes anaphase onset and aneuploidy, Cdc20p concentrations must be precisely regulated during each and every cell cycle. Catastrophic mitosis induced by Cdc20p in S phase occurs even in the absence of core APC components. Thus, Cdc20p can function independently of the APC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Genes cdc , Fase S/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética
13.
Nature ; 423(6943): 1009-13, 2003 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-12827207

RESUMEN

Cks proteins are small evolutionarily conserved proteins that interact genetically and physically with cyclin-dependent kinases. However, in spite of a large body of genetic, biochemical and structural research, no compelling unifying model of their functions has emerged. Here we show, by investigating the essential role of Cks1 in Saccharomyces cerevisiae, that the protein is primarily involved in promoting mitosis by modulating the transcriptional activation of the APC/C protein-ubiquitin ligase activator Cdc20. Cks1 is required for both the periodic dissociation of Cdc28 kinase from the CDC20 promoter and the periodic association of the proteasome with the promoter. We propose that the essential role of Cks1 is to recruit the proteasome to, and/or dissociate the Cdc28 kinase from, the CDC20 promoter, thus facilitating transcription by remodelling transcriptional complexes or chromatin associated with the CDC20 gene.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Cisteína Endopeptidasas/fisiología , Regulación Fúngica de la Expresión Génica , Complejos Multienzimáticos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20 , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae/genética
14.
Genetics ; 178(4): 2361-72, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18430955

RESUMEN

Separase is a caspase-family protease required for the metaphase-anaphase transition in eukaryotes. In budding yeast, the separase ortholog, Esp1, has been shown to cleave a subunit of cohesin, Mcd1 (Scc1), thereby releasing sister chromatids from cohesion and allowing anaphase. However, whether Esp1 has other substrates required for anaphase has been controversial. Whereas it has been reported that cleavage of Mcd1 is sufficient to trigger anaphase in the absence of Esp1 activation, another study using a temperature-sensitive esp1 mutant concluded that depletion of Mcd1 was not sufficient for anaphase in the absence of Esp1 function. Here we revisit the issue and demonstrate that neither depletion of Mcd1 nor ectopic cleavage of Mcd1 by Tev1 protease is sufficient to support anaphase in an esp1 temperature-sensitive mutant. Furthermore, we demonstrate that the catalytic activity of the Esp1 protease is required for this Mcd1-independent anaphase function. These data suggest that another protein, possibly a spindle-associated protein, is cleaved by Esp1 to allow anaphase. Such a function is consistent with the previous observation that Esp1 localizes to the mitotic spindle during anaphase.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Endopeptidasas/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Huso Acromático/enzimología , Alelos , Sustitución de Aminoácidos , Mutación/genética , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Separasa , Intercambio de Cromátides Hermanas , Temperatura , Factores de Tiempo , Cohesinas
15.
J Cell Biol ; 165(6): 789-800, 2004 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15197178

RESUMEN

Deregulation of cyclin E expression has been associated with a broad spectrum of human malignancies. Analysis of DNA replication in cells constitutively expressing cyclin E at levels similar to those observed in a subset of tumor-derived cell lines indicates that initiation of replication and possibly fork movement are severely impaired. Such cells show a specific defect in loading of initiator proteins Mcm4, Mcm7, and to a lesser degree, Mcm2 onto chromatin during telophase and early G1 when Mcm2-7 are normally recruited to license origins of replication. Because minichromosome maintenance complex proteins are thought to function as a heterohexamer, loading of Mcm2-, Mcm4-, and Mcm7-depleted complexes is likely to underlie the S phase defects observed in cyclin E-deregulated cells, consistent with a role for minichromosome maintenance complex proteins in initiation of replication and fork movement. Cyclin E-mediated impairment of DNA replication provides a potential mechanism for chromosome instability observed as a consequence of cyclin E deregulation.


Asunto(s)
Ciclina E/fisiología , Replicación del ADN/fisiología , Neoplasias de la Mama , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Ciclina E/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Femenino , Citometría de Flujo , Fase G1 , Humanos , Células KB , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética
16.
J Cell Biol ; 167(2): 231-44, 2004 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-15492045

RESUMEN

In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)-cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Delta cells maintained Bud6p-dependent MT capture. Conversely, bud6Delta cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Delta kar9Delta or bud6Delta dyn1Delta mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Delta mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables.


Asunto(s)
Proteínas de Microfilamentos/fisiología , Microtúbulos/ultraestructura , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Huso Acromático , Actinas/química , Actinas/metabolismo , Citoesqueleto/metabolismo , Dineínas/fisiología , Proteínas Fúngicas/química , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas de Microtúbulos/química , Modelos Biológicos , Mutación , Fenotipo , Plásmidos/metabolismo , Factores de Tiempo
17.
Mol Cell Biol ; 26(6): 2456-66, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16508019

RESUMEN

The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the basis for the differential functions of Clb5 and Clb6 and determined that unlike Clb5, which is stable until mitosis, Clb6 is degraded rapidly at the G1/S border. N-terminal deletions of CLB6 were hyperstabilized, suggesting that the sequences responsible for directing the destruction of Clb6 reside in the N terminus. Clb6 lacks the destruction box motif responsible for the anaphase promoting complex-mediated destruction of Clb5 but contains putative Cdc4 degron motifs in the N terminus. Clb6 was hyperstabilized in cdc34-3 and cdc4-3 mutants at restrictive temperatures and when S/T-P phosphorylation sites in the N terminus were mutated to nonphosphorylatable residues. Efficient degradation of Clb6 requires the activities of both Cdc28 and Pho85. Finally, hyperstabilized Clb6 expressed from the CLB6 promoter rescued the slow S-phase defect exhibited by clb5Delta cells. Taken together, these findings suggest that the SCF(Cdc4) ubiquitin ligase complex regulates Clb6 turnover and that the functional differences exhibited by Clb5 and Clb6 arise from the distinct mechanisms controlling their stability.


Asunto(s)
Ciclina B/metabolismo , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Secuencia de Bases , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Cancer Res ; 67(19): 9006-12, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17909001

RESUMEN

The ubiquitin-proteasome system is a major regulatory pathway of protein degradation and plays an important role in cellular division. Fbxw7 (or hCdc4), a member of the F-box family of proteins, which are substrate recognition components of the multisubunit ubiquitin ligase SCF (Skp1-Cdc53/Cullin-F-box-protein), has been shown to mediate the ubiquitin-dependent proteolysis of several oncoproteins including cyclin E1, c-Myc, c-Jun, and Notch. The oncogenic potential of Fbxw7 substrates, frequent allelic loss in human cancers, and demonstration that mutation of FBXW7 cooperates with p53 in mouse tumorigenesis have suggested that Fbxw7 could function as a tumor suppressor in human cancer. Here, we carry out an extensive genetic screen of primary tumors to evaluate the role of FBXW7 as a tumor suppressor in human tumorigenesis. Our results indicate that FBXW7 is inactivated by mutation in diverse human cancer types with an overall mutation frequency of approximately 6%. The highest mutation frequencies were found in tumors of the bile duct (cholangiocarcinomas, 35%), blood (T-cell acute lymphocytic leukemia, 31%), endometrium (9%), colon (9%), and stomach (6%). Approximately 43% of all mutations occur at two mutational "hotspots," which alter Arg residues (Arg465 and Arg479) that are critical for substrate recognition. Furthermore, we show that Fbxw7Arg465 hotspot mutant can abrogate wild-type Fbxw7 function through a dominant negative mechanism. Our study is the first comprehensive screen of FBXW7 mutations in various human malignancies and shows that FBXW7 is a general tumor suppressor in human cancer.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Genes Supresores de Tumor , Neoplasias/genética , Ubiquitina-Proteína Ligasas/genética , 5-Metilcitosina/metabolismo , Aminación , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN , Repeticiones de Dinucleótido , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Modelos Moleculares , Mutación , Neoplasias/metabolismo , Isoformas de Proteínas , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
19.
iScience ; 19: 850-859, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31513970

RESUMEN

Cyclin E, a key cell cycle regulatory protein, has been linked to oncogenesis when dysregulated. We have previously shown that overexpression of cyclin E causes replication stress, leading to failure to complete replication at specific chromosomal loci during S phase of the cell cycle. This in turn promotes chromosomal damage during anaphase. Here we show that non-transformed human mammary epithelial cell clones that survive such aberrant mitoses have a specific and reproducible pattern of chromosomal Copy Number Alterations (CNAs) that we have characterized and termed the cyclin E CNA signature. Using a number of computational approaches, we show that this signature resembles one specific CNA pattern enriched in differentiated epithelial-like tumors of the breast and ovary. Analysis of the CNA profile of these clones provides a potential mechanism for cyclin E-mediated oncogenesis.

20.
Commun Biol ; 2: 125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30963113

RESUMEN

Mutations in the PARK2 gene are associated with early onset Parkinsonism. The Park2 -/- mouse, however, does not exhibit neurodegeneration or other Parkinson's disease (PD) phenotypes. Previously, we discovered that translation of Mcl-1, a pro-survival factor, is upregulated in the Park2 -/- mouse, suggesting a compensatory mechanism during development. Here we generated the Park2 -/- Mcl-1 +/- mouse and show that by reducing Mcl-1 gene dosage by 50%, the Park2 -/- genotype is sensitized, conferring both dopaminergic neuron loss and motor impairments. We propose that this murine model could be a useful tool for dissecting PD etiology and developing treatment strategies against this neurodegenerative disease.


Asunto(s)
Neuronas Dopaminérgicas/patología , Dosificación de Gen/genética , Técnicas de Inactivación de Genes , Actividad Motora/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Conducta Animal , Recuento de Células , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Enfermedad de Parkinson/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda